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The following problem is solved: What are all the "different" separable coordinate systems for the 
Laplace-Beltrami eigenvalue equation on the n-sphere S" and Euclidean n-space R" and how are 
they constructed? This is achieved through a combination of differential geometric and group 
theoretic methods. A graphical procedure for construction of these systems is developed that 
generalizes Vilenkin's construction of polyspherical coordinates. The significance of these results 
for exactly soluble dynamical systems on these manifolds is pointed out. The results are also of 
importance for the analysis of the special functions appearing in the separable solutions of the 
Laplace-Beltrami eigenvalue equation on these manifolds. 

I. INTRODUCTION 

In this paper we find all separable coordinate systems on 
the real n-sphere S" and Euclidean n-space for the Hamil­
ton-Jacobi equation 

.. as 
H=gJSS J =E, S I =-., i= I, ... ,N, (I) 

KX x ax' 

and the Helmholtz equation 

A" = _1_ ~ (.fi giJ ~) = A. \II, 
.fi ax' ax' 

i,j = I, ... ,n, g = det(gij)' (II) 

There are several reasons why this is an important problem. 
( 1) The list of 11 coordinate systems in R3 that provide 

a separation of variables for these equations are well known. I 
Their value in the solution of boundary value problems is 
unquestioned. More recently there has been an interest in 
separation of variables on the spheres S2 and S3 (see Refs. 2 
and 3). In the case of S3 the relationship with the hydrogen 
atom has been extensively studied.4 More recently the im­
portance of separable coordinate systems on S" has been 
discussed5 for dynamical symmetries in a spherical geome­
try. It is also of intereSt to study classical and quantum me­
chanics on S" and R" as a means for finding exactly soluble 
dynamical systems interacting under a suitable potential so 
as to admit solution via a separation of variables. 

(2) On the mathematical side the solution of the prob­
lem we solve here gives the basic results necessary for a com­
plete analysis of the special functions that are solutions of 
(II) via a separation of variables on Sm and R". In doing so 
all the separable solutions can be characterized in terms of 
symmetric second-order elements in the enveloping algebra 
of the corresponding symmetry group. This provides the ba­
sis for an all-embracing theory of such solutions and a syste­
matic treatment of relations amongst these solutions. For an 
introduction to these methods we refer to Miller's book.6 In 
solving this problem we also extend Vilenkin's work, which 
dealt with a restricted class of separable solutions.7 

We should also note at this point the articles of Luc-

quaud,8-IO which give a discussion of spherical harmonics on 
SO(n) via an elegant tensorial approach. For some of the 
crucial results concerning separation of variables we refer 
the reader to the papers of Levi-Civita, II Eisenhart,12 and 
Benenti.13 Referring now to equations (I) and (II) we 
should, of course, mention that these equations are ex­
pressed in an arbitrary coordinate system in terms of which 
the infinitesmal distance on the underlying manifold is 

(1.1 ) 

[Formulas (I), (II), and (Ll) use the summation convec­
tion on indices i,j.] Separation of variables for (I) is under­
stood to mean that there is a coordinate system {x'} for 
which it is possible to find a solution S = S(X;A.I'''',A.,,) of 
(I) such that 

" S = L Si (xi;A.)J"',A.,,) ( 1.2) 
i=1 

and det(a 2S laxi aA.J )"x" ,cO, i.e., S is a complete inte­
gral. 14 This type of variable separation is additive. 

Separation of variables for (II) is normally understood 
in the product sense, IS i.e., the coordinates {x'} should be 
such that there is a soluton of (II) depending on n param­
eters cl, ... ,e" ofthe form 

n 

\II = II \IIi (Xi;CI,· .. ,c" ). 
i= I 

( 1.3) 

In this article we determine all coordinate systems that pro­
vide additive separation for (I) and product separation for 
(II) for the following Riemannian manifolds: (i) the real n­
sphere S" and (ii) real Euclidean n-space R". We also de­
scribe a graphical procedure for constructing these coordi­
nates, which includes Vilenkin's description of polys ph erica I 
coordinates as a special case. 

We recall a few basic facts about variable separation. 
For a positive definite Riemannian space a separable coordi­
nate system {xi} for (I) can always be chosenI6

•
17 such that 
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the contravariant metric tensor is 

.. rlSabH -2 0] 
(g'J) = [ 0 a g"'3' ( 1.4) 

The functions H a- 2 and g"'3 have the form 

~al ~bl 
H - 2 - ,.pP = ~ A abP(Xb) __ , 

a -$'.5 + ~ 
( 1.5) 

where ~ = det(~ob (XO »). The variables xa are such that 
atjlaxa = 0, for all i,j. 

A typical separable solution takes the form 

S= LSa(xa) + Lea xa. 
a a 

The choice of ignorable variables xa is not unique; we would 
get a similar system if we defined new coordinates x" by 
xa' = a'/JxP, xa' = xa, where det(a'/J) =1=0. We say that two 
such coordinate systems are equivalent and will not distin­
guish between them, 

The standard form (.1.4) will be central to our argu­
ments. If a coordinate system is separable for (II), it is auto­
matically separable for (I). A separable system {Xi} for (I) 
separates (II) if and only if 

Rab = 0, a=l=b, 

where Rij is the Ricci tensor expressed in these coordinates. 
In particular, for orthogonal coordinates, (I) and (II) sepa­
rate in the same systems. 

A. The n-sphere Sn 

This space is most readily realized in terms of n + 1 real 
"standard" coordinates (SI"",s" + 1 )eR" + I' which satisfy 

sf+···+~+I=1. (1.6) 

The infinitesimal distance is given by 

ds2=dsf + ... +d~+I' ( 1.7) 

The n-sphere admits the group SO (n + 1) of isometries. 
The algebra so(n + 1) is realized on the cotangent bundle of 
R" + I by the Killing vectors 

Iij =s/Ps
j 

-SjPS
I
' i=l=j. (1.8) 

We recall in the normal correspondence, as laxi = Pi and L 
is a Killing vector if L is linear in the p;'s and {H,L} = 0 
where { , } is the Poisson bracket. It is then seen that the 
ignorable coordinates xa of a given separable coordinate sys­
tem are such that Pa is a Killing vector. The Lie algebra 
so(n + 1) also can be realized by means oflinear differential 
operators, with the identification Ps-d I asi. The symmetry 
operator Iij =si(alasj -sjalasi ) satisfies [~"Jy] =0, 
where [ , ] is the commutator bracket and ~" is the opera­
tor (II) on S". We note that the two realizations of 
so(n + 1) directly relate to the SO(n + 1)-invariant equa­
tions (I) and (II). For equation (I) the algebra is realized as 
the set of all Killing vectors L that are in involution with H, 
i.e., {H,L} = O. For equation (II) the algebra is realized by 

I 

all first-order linear differential operators .? that commute 
with ~". The n-sphere as a Riemannian manifold is a space 
of constant curvature - 1 and is completely characterized 
by the Riemann curvature tensor conditions l8 

R hijk = (ghk gij - ghj gik)' 

in any coordinate system. 

B. Euclidean n-space Rn 

( 1.9) 

Here, a point is given by n real (Cartesian) coordinates 
(YI""'Y") and the infinitesimal distance is 

( 1.10) 

where R" admits the isometry group E( n) = T" ® SOC n). 
This is the semidirect product of the n-dimensional Abelian 
group of translations T" and SO(n). On the cotangent bun­
dle of R It the Lie algebra ~ (n) has a realization by Killing 
vectors: 

Mij = Yi PYj - Yj PYi ' Pk = PYk ' 

i,j,k= 1, ... ,n, i=l=j. (1.11) 

The corresponding realization in terms of symmetry op­
erators can be obtained by the correspondence Pj-d layj' 
Euclidean n-space is characterized by the Riemann curva­
ture tensor condition Rhijk=O in any coordinate system. 

We note that the study of variable separation will give a 
complete enumeration of the scope and extent of special 
function identities available in these spaces. In addition, ex­
actly which special functions appear can be determined. The 
problem of separation of variables on SIt is also intimately 
related to the separation of variables problem on CP (n ) , 19 n­
dimensional complex projective space. 

II. SEPARATION OF VARIABLES ON Sn 

The following is a crucial result in the classification of 
separable coordinate systems on S". 

Theorem: Let {x'} be a coordinate system on SIt for 
which the Hamilton-Jacobi equation admits a separation of 
variables. Then, by passing to an equivalent system of co­
ordinates if necessary, we havegij = ~ijH i- 2, i.e., separation 
of variables occurs only in orthogonal coordinates. Further­
more, in terms of the standard coordinates on the sphere 
SI"",s" + I' the ignorable variables can be chosen such that 

Pa, = 112, Pa, = 134 , ... , Paq = 12q+ 1,2q+Z' (2.1) 

where the number of ignorable variables is q. 
Proof This is based on the general block-diagonal 

expression of the canonical form of the contravariant metric 
tensor for a separable coordinate system. It is well known20 

that any element of the symmetry algebra so(n + 1) of SIt is 
conjugate to an element of the form 

L = 112 + b2134 + .. , + bJzv-I.2v' (2.2) 

If this element corresponds to the ignorable variable a I' i.e., 
L = Pa" then by local Lie theory the standard coordinates 
on the n-sphere can be taken as 

(SI"",s" + I ) = (PI cos(al + WI ),pl sin(al + WI ),p2 cos(bpi + wz), 

P2 sin(b2a 1 + wz), .. ·,pv cos(bva1 + wv),pv sin(bval + Wv ),s2v+ 1 , ... ,s" + 1)' (2.3) 
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where pt + ... + p; + ~v + I + ... + S; + I = 1. The infinitesimal distance then has the form 

ds2 = dpt + ... + dp; +pt (da l + dWl)2 + •.. +p!(bv da l + dWv )2 + d~v+ I + ... +dS;+ I' (2.4) 

If there is only one ignorable variable then the coordinate system must be orthogonal and this is only possible if b2 = ... = bv 

= 0, i.e.,p a, = 112, Indeed, the requirement that the contravariant metric have the form ( 1.4) (orthogonal in this case) is that 

v p] 
-dwl = ~ -b· dw·. ~ 2' , 

j=2PI 
Since the differentials dpj, dWj (j>2), must be independent and the only condition onpt is 

v 

L P7 + ~v+ I + ... + S; + I = 1, 
;=1 

(2.5) 

the condition dwt = ° implies bj = O,j = 2, ... , v, and dWI = 0. We can then take the constant WI = ° by suitably redefining at' 
The theorem is proven in this case. 

Now suppose there are q > 1 ignorable variables. The Killing vectors Pa" i = 1 , ... ,q, must form an involutive set. It follows 
from the spectral theorem for commuting skew-adjoint matrices that for each i,Pa, has a representation of the form 

Pa, = b~112 + bV34 + ... + b~/2vi-I,2vl' 
for i = 2, .. ,q. In fact we can assume 

N 

Pa, = 121 - 1,21 + L b; 121 - 1,21> i = 1, ... ,q. 
i>q 

The projective coordinates on the sphere then have the form 

(SI, ... ,sn + I) = ~I cos(al + WI),p1 sin(al + wl), .. ·,pq cos(aq + Wq ),pq sin(aq + wq), 

Pq+ I cosCtl b~+ lal + Wq+ I)' Pq+ I sinCtl b~+ lal + Wq+ I) , ... , 

(2.6) 

(2.7) 

PN sinCtl b :Val + WN) ,s2N + I ,· .. ,sn + I) . (2.8) 

We now make the crucial requirement that the ignorable variables ai' i = 1, ... ,q, are part of a separable coordinate system. If 
we compute the covariant metric, it should be in block-diagonal form with respect to the two classes of variables. Just as in the 
case q = 1, this is only possible if b; = 0, i = I, .. ,q, 1 = q + I, ... ,N and dWI = 0, l<i<q. We can therefore assume that 
LI = 112'£2 = 134,· .. '£q = 119 _ 1.19 ; the ignorable coordinatesa l then can always be chosen such that WI = 0, l<i<q, and the 
system is orthogonal. Q.E.D. 

This theorem enables us to bring to bear Eisenbart'sl2 results on orthogonal systems of the Stiickel type. Our problem 
reduces to the enumeration of all orthogonal separable coordinate systems. We use an inductive procedure such that given all 
separable systems for Sj,j < n, we can give the rules for construction of all systems on Sn. 

If {x'} is an orthogonal coordinate system with infinitesimal distance dsl = ~7= IH7(dxl)2, then the conditions that the 
space be of constant curvature - 1, i.e., that we are dealing with Sn' are 

(i) Rijjl = - H7 H], i# j, 

(ii) Rhllk = 0, i#h #k. (2.9) 

Eisenbart12 showed that in order for orthogonal separation to occur on any n-dimensional Riemannian manifold the contra­
variant metric gij = 6ij H 1- 2 must be in Stackel form and that the necessary and sufficient conditions for this are 

a
2 

I H2 a I H2 a I H2 a I H2 a I H2 a I H2 a 1 H2 --. -k og 1--. og I -k og 1+- og 1-- og j + -- og j - og k = 0, (2.10) 
ax' ax ax' ax aXj aXk aXk ax) 

for j#k. He then went further to show that these conditions, together with the equations (2.9) (ii), are equivalent to the 
equations 

a I H2 a I H2 a I H2 a I H2 a I H2 a I 2 -.og j- og 1--. og 1- og . -- og j-. OgHk =0, 
ax' axk ax' axk 'axk ax' 

It follows that the metric for a separable system can be written in the form 

gii =H7 =Xj IT (O'ij +O'jl), i= I, ... ,n, 
j~1 

i,j,k pairwise distinct. 

where XI' O'ij are functions of Xl at most. The conditions (2.9) (i) are then equivalentto 

O'llO'kl (O'jk + O'kj) - O'llO'kj (O'kl + O'lk) - O'ktO'lk (O'ij + 0')1) = 0, i,j,k distinct, 
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whereCTkl = (Bxk)CTkl , etc. We now study various possibilities for the functions CTij' IfaH the functionsCTij are such that CTij =1=0 
then Eisenhart has shown that the metric coefficients have the form 

gii =Hf=Xi II (CTi -CTj ), 
j¥-i 

(2.14) 

where CTi = CTi (Xi) and CT; =1= O. This metric will be the basic building block on which we can formulate our inductive construc­
tion. Without loss of generality we can redefine variables {Xi} in such a way that CTi = Xi, i.e., 

i = Xi (x' - Xl). H 2 II' . (2.15 ) 
Hi 

The conditions (2.9) (i) then amount to 

(Xl - X ) - + - + (X' - x) - + -[ . I ]-I{ -2 (I) -I (I)'} [II . I ]-I{ -2 G) -I (i)'} II! (Xi - xj)2 Xi (Xi - xi) Xi I ¥-i (Xi - xj)2 i (x j - Xi) i 

I 
+ ~ =-4 

,£,.. I i I' I k • 
l¥-i.iXI(X -x)(x -xl)IIk¥-l(x -x) 

These equations have the solution 

(llxi )(n+I)+4(n+I)!=0, i=l, ... ,n. 

i.e., 

The function/(x) can also be written 
n+1 

lex) = -4 II (x-ej ). 

i=1 

(2.17) 

(2.18 ) 

There are two requirements to determine which metrics of 
this type occur on Sit; (I) the metric must be positive defi­
nite and (2) the variables Xi should vary in such a way that 
they correspond to a coordinate patch that is compact. 
There is a unique solution to these requirements; the Xi, ei 
should satisfy 

(2.19) 

These are elliptic coordinates on the n-sphere Sn' They can 
be related to the coordinates {Sj} via 

(2.20) 

These systems are the basic building blocks for separable 
coordinate systems on real spheres. To complete the analysis 
of possible orthogonal separable systems we need to consider 
the case when some of the CTij functions are constants. If CTij 
= aij (const), Eisenhart has shown that there are fourpossi­
bilities; 

(i) CTij =aij' CTjj = aj;, 

CTik = aik, CTjk =ajk ; 

(ii) CTij =aij' CTji = aji> 
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(2.16) 

(2.21) 

where CTj is a function of x j only and i,j,k are pairwise dis­
tinct. If we fix i and j, then, for k values corresponding to 
cases (i)-(iii),CT;k = aik . To examine how the inductive pro­
cess works let us takeCTIl = all for 1= k + I, ... ,n and CTij =1=0 
forj = 2, ... ,k. Then we have 

CTjl = ajl, CTII = all UI, CTlj = aljCTI' 

all ajl - alja ll = 0, for 1= k + I, ... ,n, j = 2, ... ,k. 

Assuming that alj =1=0 for 1= k + 1, ... ,n,j = 2, ... ,k, we find 
the metric coefficients have the form 

H;=[XiIT(CTij+Uji)][ iI (ail+a/iCTI)]' 
j¥-i I=k+ 1 

i = l, ... ,k, (2.22) 
1 <.j<.k 

H;=XI II (ulm +CTml ), l=k+ 1, ... ,n. (2.23) 
m;61 

m>k+ 1 

Let us assume that no further functions uij,ulm are con­
stants. Then using the results of Eisenhart we can take the 
metric coefficients as 

(2.24) 

The conditions Rkllk = -H~H; are equivalent to (2.16) 
and (2.17) with i = k + 1, ... ,n and n-k = n'. Putting 

H7= [Xi II (Xi-X
j
)], 

j;6i 

the conditions Rijji = H;HJ and Ril/i = - H;H; are equi­
valent to 

H j-
2H j -

2Rijji + ( IT U I ) 
l=k+1 

X ')' -- - + 1 =0 
[

It I (CT;)2 ] 
I' ='*'(+1 4H;' U I ' 

E. G. Kalnins and W. Miller, Jr. 
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or (OJ)2 (OJ) 2-- - - -
01 01 01 

X[";IOgH~+H~ L 2 ~ m] = -4H~, 
ax m~1 H m (x - x ) 

(2.26) 

where RWI is the Riemann curvature tensor for the Rieman­
nian manifold with infinitesimal distance 
dr = l:~= 11I~(dxi)2. These equations are satisfied if and 
only if 

I "-k+1 
-X = -4 n (xl -1m), I=k+ l, ... ,n, (2.27) 

I m=1 

and 0 1 = (xl-/,,-k+I}/(it-k-/"_k+I)' where we 
take/l < 12 < ... <f.. _ k + I • The remaining condition then is 
- -2-2 
RWI = - H iHj so that 

1 k+1 
-= -4 n (xi-ej ). (2.28) 
XI J=I 

The coordinates on S" can be taken as 

(8 ..... ,$" + I ) = (UIVI ... ·'UIVk + I ,u2, .. ·,u" _ k + I ), 

where 
n-k+1 
L u~= 1, 
1=1 

and 

(2.29) 

(2.30) 

2 lli=k+l(xl-em ) 
Urn = - (2.31) 

",,~m (e" - em ) 

The infinitesimal distance has the form 

d~ =dsi [ lli=k+I(xl-/,,_k+l) ] +d~, 
llm~"_k+ I (1m - I,,-k+ I) 

where 

m = k + l, ... ,n, j = l, ... ,k. 

(2.32) 

(2.33) 

(2.34) 

The choice of embedding of the sphere Sk in the n-sphere S" 
given by (2.29) is not, of course, unique. It is here we meet 
the second concept involved in regarding two choices of c0-

ordinates (81,,,,,$,, + I) as giving "equivalent" coordinate 
systems. Clearly we could subject the coordinates {8i } to an 
arbitrary SO(n + 1) group action. The infinitesimal dis­
tance would remain unchanged in the process. We regard the 
new set of coordinates (8; , ... ,$~ + I) as equivalent to the 
original set. This is just the mathematical fonnu1ation of the 
geometric identification of coordinate systems that differ 
only by an isometry. This aspect of equivalence is obviously 
group related. If the Riemannian manifold had no isometry 
group it would not be relevant. 

Now suppose one of the constants alj = 0 for some fixed 
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I andj. Then from the relations 

allOJI - Olj 011 = 0, (2.35) 

we have 011 = 0 and consequently 011 = 0, for i = l, ... ,k. 
This implies that 01 does not appear in H:, i = 1, ... ,k. 

Referring to the curvature equation Ri/u = - H:H~ 
we see that it cannot be satisfied if 0li = OUOI = 0 as this 
would imply - 4H~ = O. Thus olj =/:0 for each I,j. Recall 
here that we have assumed that none of the functions 0 ij 

(i,j = 1, ... ,k, i=/:j), 0lm (I,m = k + 1, ... ,n, I =/:m) is a con­
stant. Let us now push this process one step further: Let 
0k+l,s =Ok+I •• for 8=P+ 1, ... ,n and Ok+I,s=/:O for 
8 = k + 1, ... ,p. Then applying the same arguments as pre­
viously. we see that the metric coefficients H~. 
1= k + 1 ..... n, can be brought to the form 

H~=XI[ n (Olm+Oml)] [ IT (01.+0.10.)], 
m~1 .=p+1 

k+I..;I..;p 

H~=X, [ n (0., +ors)]' 
.~t 

'>p+ I 

Here the indices run over the ranges 

i,j .... = 1, .... k, I,m, ... = k + 1, ... ,p, 

8,t.U, ... = P + 1, ... ,n. 

(2.36) 

(2.37) 

(2.38) 

We follow this convention unless otherwise stated. If none of 
the remaining 0ab'S are constants there are two cases to con­
sider: 

(i) a/slos! = o/slosi' 

for 8 = P + 1, ... ,n, i = 1, ... ,k, 1= k + 1, ... ,p. 

Then the infinitesimal distance has the form 

dr = ( IT Ot) dfii 
t=p+1 

+ i X t [n (o"t + 0", )] (dX')2, (2.39) 
t=p+1 .. .;ot 

where 

d(j)2 = ( fr 01) t XI [n (oij + Ojl)] (dXI)2 
1="\,"+1 1=1 j~i 

+ t XI [n (Olm + Oml)] (dX/
)2. (2.40) 

I=t-+I m~1 
The form d(j)2 corresponds to the choice of metric coeffi­
cients with 1= k + 1 .... ,p < n. If we impose the conditions 
Rabba = - H!H~, then we see that for 
a,b = 1, ... ,k,k + 1,,, .. ,p the conditions are identical with 
(2.16). Hence 

1 k+ I . 

-= -4 n (xl-ej ), i= 1, ... ,k, (2.41) 
X; j=1 

1 p-k+1 
-= -4 n (xl -1m), I=k+ 1, ... ,p, (2.42) 
XI m=1 

and 

(2.43) 
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The remaining conditions 

R tuut = - H;H~ 

and 

R taat = - H~H; (a = I, ... ,p) 

also imply 
t n-p+1 
-= -4 IT (.r-gt ), s=p+ I, ... ,n, (2.44) 
Xs 1=1 

and 

(X' -gn-p+ I) 
U t = , t = P + I, ... ,n. 

(g,-p-gn-p+l) 

These coordinates on Sn can then be constructed in a stan­
dard way: 

(sw··,sn + I) = (UIVJWV""UJVJWk+ J ,uJv2,···, 

(2.45 ) 

where 

k+J p-k+1 n-p+1 r w;= 1, 
;=J 

r vt= 1, 
I=J 

r u;= 1, 
;=1 

and on each of the spheres defined by the Ui , Vj' and W k 

coordinates, elliptic coordinates are chosen, Le., 

(2.46) 

(2.47) 

2 - n;=p+ I (x
q 
-gt) 

Ut = , s,t = I, ... ,n - p + 1. n.,., (gs - gt ) 
(2.48) 

Now 

(ii) al.la.1 :lais/asi ' 

In this case UI = ai' for 1 = k + t, ... ,p, as follows from Ei­
senhart's cases (2.21) (i)-(2.21 )(iv). The infinitesimal dis­
tance has the form 

ds
2 = ( IT UI) d{i)~ + ( IT (u, + a») d{i)~ 

t=p+1 t=p+1 

+ ± Xi [ II (UUI + UtU ) 1 (dxt)2, a:lO, 
t=p+1 ""t 

u>p+ I 

(2.49) 

where 

d{i)~ = ;tJ Xi [J1 (Uij + ujl ) 1 (dXi)2, 

J<.k 

(2.50) 

d{i)~ = f X, [ II (Ulm + Uml) 1 (dX
/
)2. 

l=k+1 m,.1 
k+ I<.m<.p 

(2.51) 

The conditions that this metric correspond to S n require that 
we have the same functions Xa as in the previous case and 
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now 

Here we have adopted the convention 

gn-p+ I +1 =gl' for k + I</<p. (2.53) 

Consequently the infinitesimal distance has the form 

d~ = [n~=p+ I (x' -gJ)] d{i)~ 
nu,.t(gu -gJ) 

+ [n~=p+ I (x
t 

- g2)] d{i)~ 
nu,.t (gil - g2) 

_.!. ± ["U#t,p+I<.u<.n(Xt-X
II

)] (dX' )2. 

4 I=p+ I n:!!+ 1 (x
t 

- g .. ) 
(2.54) 

A standard choice of coordinates on Sn for this infinite­
simal distance can be taken as 

(2.55) 

with Ujf vJ' and Wk coordinates as in (2.45). This procedure 
can be iterated without difficulty to find all separable coordi­
nate systems on Sn' If we do this we obtain an infinitesimal 
distance of the form 

+ r (Hr;+ 1)2(dx J)2, 
JeNp+ I 

(2.56) 

Here {NJ, ... ,Np + I} is a partition of the integers I, ... ,n into 
mutually exclusive sets N I , i.e., NlnNJ = 0. It follows from 
Eisenhart's types (2.21) (i)-(2.21) (iv) that (axl)H Y) = 0 
ifj E NI . The curvature conditions can now be written down, 
The conditions Rl./li = - H;H f (i:l j) are equivalentto the 
equations 

R (p+ I) - (HP+ 1)2(HP+ 1)2 
I./Ii - - i u' 

(H~) -2(H I) -2R ~/'> 
I J W' 

+ [ II (Uk + a l )] 
KeNp + 1 

= - 4(H
I
(P + I) )2, 'e N ,. p+ I' 

i,j eNp + I' 
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I I ui2 

"4 Ie~+ I (H?+ 0)2 (UI + a l )(UI + a J ) = - 1. 
(2.60) 

Here we have used the notation R Wk to refer to the curva­
ture tensor of the Riemannian manifold with infinitesimal 
distance 

dCtJ~ = L (H V> )2(tJxi)2. 
leN! 

These equations have the solutions 

[ ] 
IIIeN (Xl-el ) II (UI+al ) = HI , 

IeNp + 1 IImeNp+l(em-el) 

(Hf+ 1)2 = -=..! [IImeNp+1 (m"./) (X
m 

- Xl) ] , 

4 II:p,;;+I(xl-e
n

) 

R Ml = - (HV»2(Hy»2, 

1= 1, ... ,p + 1, i,j E NI , 

(2.61 ) 

(2.62) 

(2.63) 

(2.64) 

where np + I = dim Np + I . The infinitesimal distance can al­
ways be written in the form 

1 Ln , [IIj = I (Xi - xj) ] i 2 
-- (dx) 

4 lIn, + I (i) , 
;=1 j=1 x-e} 

(2.65) 

where each dCtJ~ is the infinitesimal distance of a Spa' The 
coordinates on each Spa are again separable. Clearly we must 
have the constraint ~f= I PI + n l = n. Using this infinitesi­
mal distance we can construct all separable coordinate sys­
tems inductively. The basic building blocks of separable co­
ordinate systems are the elliptic coordinates on spheres of 
various dimensions. We will prescribe a graphical procedure 
for obtaining admissible coordinate systems, essentially giv­
ing the admissible embeddings of spheres inside spheres, 
which are allowed so as to correspond to separable coordi­
nates. 

III. THE CONSTRUCTION OF SEPARABLE 
COORDINATE SYSTEMS ON Sn 

As we have seen in the previous section the basic build­
ing blocks of separable coordinate systems on Sn are the p­
sphere elliptic coordinates 

p+1 

L Pst = 1, 
}= I 

P = 1, ... ,n, j = 1, ... ,p + 1. (3.1 ) 

Two important examples of these coordinates are 

( .) 1 --'- (xl-el ) --,-_(X
I

- e2) 
1 p = : 1st = , 152 - , 

(e2 - ell (el - e2) 
(3.2) 
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.:z _ (Xl - el ) (x2 - el ) 
(ii) p = 2: 2"1 - , 

(e2 - el )(e3 - e l ) 

~ = _ (Xl - e2) (x
2 

- e2) , 

(e2 - el )(e3 - e l ) 

~ = (Xl - e3 )(x
2 

- e3 ) , (3.3) 
(e3 - el )(e3 - e2) 

where~ +~ +~ = 1,el<xl<e2<x2<e3' 
We will develop a graphical calculus for calculating ad­

missible coordinate systems. We represent elliptical coordi­
nates on Sn by the "irreducible" block 

(3.4) 

Each separable coordinate system will be associated with a 
directed tree graph. Consider, for example, the sphere S2' 
There are two possibilities. 

( 1 ) The first possibility is the irreducible block 
I ell e2 1 e 3 \. Most treatments of elliptic coordinates on S2 cor­
respond to the choice el = 0, e2 = 1, e3 = a> 1. This is just a 
reflection of the fact that for Jacobi elliptic coordinates the 
variables Xi and ei always can be subjected to the transforma­
tion 

.. I b' b X = ax + , ej = aej + , 
i = 1, ... ,n, j = 1, ... ,n + 1. (3.5) 

Thus we can always choose e l = 0 and e2 = 1. [Note in 
particular that ~ can always be replaced by[]lll. Put­
ting Xl = cos2 f/J we recover lSI = cos f/J, IS2 = sin f/J 
(0<f/J<21T). ] 

( ii) The second system is the usual choice of spherical 
coordinates 

Sl = sin (J cos f/J, S2 = sin (J sin f/J, S3 = cos (J. (3.6) 

This system can be considered as the result of attaching a 
circle to a circle and is the prototype for the construction of 
more complicated systems. The graph 

(3.7) 

is taken to correspond to the choice of coordinates 

--'- 2 (xl-el ) 
5) = lUI = , 

(e2 - e l ) 

si = (IU~ )(Ivr) = (Xl - e2 ) (x
2 

-11) , (3.8) 
(e l - e2 ) U; -II) 

--'- _ ( u2 ) ( v2 ) _ (Xl - e2 ) (x2 
- J;) 

53-1212- , 
(e l - e2) (II -/2) 

el <xl <e2, II <X2<J;. 

Clearly, choosing angle variables on the SI'S, the choice of 
spherical coordinates corresponds to the graph 

~. (3.9) 

Only the square of origin of the arrow is of importance for a 
given arrow connecting two irreducible blocks, not the tar­
get square. The general branching law for an arrow connect­
ing two irreducible blocks is readily given: 
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(3.10) 

We should also note here that because of the availability of 
transformations of the type (3.5) some graphs that look dif­
ferent do in fact correspond to the same coordinate system. 
Indeed, consider graphs of type 

(3.11a) 

(3.11b) 

(3.11c) 

These graphs correspond to Lame9 rotational coordinates on 
the sphere S3' There are, however, only two distinct such 
coordinate systems. In fact, if the coordinates Xi and eJ 
(i = 1,2, j = 1,2,3) are subjected to the transformation 

Xi __ Xi=y; 

e:--e: =e~, el--el =ei, 
e~--e~ =ei, 

(3.12) 

we see thatthe (3.11a) and (3.lIc) correspond to the same 
type of coordinates. Graphs that are related in this way can 
be recognized by the feature that if the branch below a given 
irreducible block I ell····1 ep I is obtained from that of an­
other graph by reflection about a vertical at the center of the 
corresponding e: ... e; block, then the two graphs are equi­
valent. (Weare assuming, of course, that all other features of 
the graphs are identical.) Graphs that are essentially the 
same can be related by several transformations of the type 
(3.5) and the situation gets more complicated, e.g., 

(3.13) 

If the two irreducible blocks of S" and Sp occur as indicated 
in (3.10), as part of some larger graph, this means that the 
elliptic coordinates "uv".'"u,,+ I and pVv""pvp+ I of these 
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blocks must occur in the combinations 

WI = nUW",wi = (nUi)(pVt), ... , 

w i + p + 1= (nUi)(pVp + I)' Wi + p + 2 = nUi+ I"", 

(3.14 ) 

Arrows may emanate from different squares (ei's) of the 
same block but cannot be directed at the same block. With 
these rules we may construct graphs corresponding to all 
separable coordinate systems on S". For n = 3, we have the 
following possibilities3,4: 

( 1 ) I 0111 a Ib I Jacobi elliptic coordinates, (3.15 ) 

(2) (a) @li1:i1 (b) CQijI!J Lame rotational 

riliJ CillJ coordinates, (3.16) 

(3) 

(4) 

@1}J 
~ 

Lame subgroup reduction, 

\ 

spherical coordinates, 

01 

o 1 

(5) ~ cylindrical coordinates. 

~llil 

(3.17) 

( 3.18) 

(3.19) 

The formation of more complicated graphs is now clear. 
Thus, 

is a coordinate system on S6 with coordinates 

~ = (2UI)2, ~ = (2U2)2(3Vl)2, 

S; = (2U2)2(3V2)2, ~ = (2U2)2(3V3)2, 

S; = (2U2)2(3V4)2, ~ = (2U3)2(IWI )2, 

.r, = bU3 )2( IW2)2. 

(3.20) 

(3.21) 

Vilenkin 7 has studied polyspherical coordinates on S" and 
developed a graphical technique for constructing them. For 
example, he considers the coordinates on S6: 

Xo = cos fP3 cos fP2 cos fPl' 

X03 = sin fP3' 

X02 = cos fP3 sin fP2 cos fP2lt 

XOI = cos fP3 cos fP2 sin fPl cos fPI2 cos fPw 

X021 = cos fP3 sin fP2 sin fP2lt 

XOl2 = cos fP3 cos fP2 sin fPl sin fP12' 

XOII = cos fP3 cos fP2 sin fPl cos fPI2 sin fPlI, 

and represents these coordinates by the graph 

E. G. Kalnins and W. Miller, Jr. 
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For him, spherical coordinates on S2' 

Xo = COStpl, 

XOI = sin tpl cos tpw 

XOll = sin tpl sin tpw 

correspond to the graph 

(3.23) 

Vilenkin denotes coordinates of rank r by X OI, ... I, and in the 
example of (3.22) arranges coordinates in the order 

(3.24) 

i.e., coordinates of higher rank precede those of lower rank 
while coordinates of equal rank are ordered lexicographical­
ly. Coordinates of the form X OI ... I ; ... i are called subordi-

I rs+ I m 

nate to the coordinate X OI, ... I,' Further, the coordinate 
X Oj, ... jm essentially precedes the coordinatexOi, ... I, if m >s, and 
ik = ik for I<k<s - 1 andis <is' The coordinatexol''''I, es-
sentially follows X Oj, ... jm' To extract coordinates on Sn from 
this notation let X OI, ... 1m be a vertex of nonzero rank. A rota-
tiong(tp) by the angletp = m l ... 1 in the (XOI ... 1 ,xOI ... 1 ) 

T I '" I ,"-1 I m 

plane is then associated with this vertex. In this way Vilenkin 
constructs graphs representing the various possible polys­
pherical coordinates on Sn. In our notation his coordinate 
system (3.22) is represented by the graph 

tf'l.l 

From these considerations we see that Vilenkin's polyspheri­
cal coordinates are the special case of separable coordinates 
on Sn consisting of those graphs that contain only the irredu­
cible blocks of type (QII]. 

IV. PROPERTIES OF SEPARABLE SYSTEMS IN Sn 

Here we make more precise our graphic techniques 
through a prescription for writing down the standard co­
ordinates So i = I, ... ,n + I, on Sn in terms of the separable 
coordinates. A given standard coordinate coming from a 
given graph consists of a product of r factors, which we de-

note xf,: :::~, = (p, uj ) ... (p,uj ). This is obtained by tracing 
the complete length of a branch of a given tree graph, i.e., 

1729 J. Math. Phys., Vol. 27, No.7, July 1986 

We can then set up an ordering < for the products x~', ..... /p,. 
We say thatxp,'''/p, <x~:·:.~sQ, if PI = QI,il = il,· .. ,Pt = Q"it 
< it' Pt + I =1= Qt + I , .. ·,is =1= is . Then if we arrange the products 
in increasing order, say XI, ... ,xn + I' we can identify this or­
dered n-tuple withsl, ... ,sn + I' For the example (3.21) given 
above, the choice of coordinates corresponds to this order­
ing. 

Having settled on a prescription for writing down the 
coordinates corresponding to a given coordinate system on 
Sn' we can now discuss the separation equations for both the 
Hamilton-Jacobi and Helmholtz equations. Let us first con­
sider the coordinates corresponding to the irreducible block 
I e1hl····· ·len+1\.The Hamilton-Jacobi equation in these 
coordinates is 

n 1 2 
H= L .. PI=E, 

I = I ["NI (x' - x') ] 
(4.1 ) 

where 

PI = [Yf (Xl - ej )] a~. 
j=1 ax 

The separation equations are 

Cfi: (Xl - ej ) ] (ax ,sI)2 

+ [E(XI)n-1 +.± Aj(XI)n-J] =0. 
,=2 

(4.2) 

If we set E = A 10 then the constants of the motion associated 
with the separation parameters AIO ... ,A.n are 

17 = L I ~ (second-order Casimir invariant), 
I> j 

I n ~ SijI 2 
2 = "'" I ij' 

i>j 

I n - ~SijI2 
n - ~ n ii' 

I>j 

where 

S ij 1 L' 1 =- e· .. ·e· l' ",,' 
• i'P .. ,i,>F 

(4.3) 

and the summation extends over i 1, ... ,il =l=i,j and i l =l=im for 
1 =l=m. For the associated Helmholtz equation the eigenval­
ues of an have the form 0'(0' + n - I) and the Helmholtz 
equation becomes 

± 1 {.J9; ~ (.J9; ~)} 
I = I ["j;-'i (Xl - xj) ] , axi I axi 

-O'(O'+n-I)'II, 

where 
n 

eJJ I = II (Xl - ej ). 

j=\ 

E. G. Kalnins and W. Miller, Jr. 
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The separation equations are 

+ [U(U + n - l)(xi)" + "ilXj(Xi)"-J] 'l'i = o. 
1=2 

(4.5) 

The identification Xl = U(U + n - 1) enables us to further 
identify the symmetry operators whose eigenvalues are Xj 
with the expressions (4.3) where Iij-+lij and [jjJZ'] = o. 
For an irreducible block appearing in an admissible graph 
the generalizations of these equations can be computed read­
ily. Consider the block shown as part of a given graph: 

Then define di (i = 1, ... ,p + 1) as follows: di = 0, if there is 
no arrow emanating downward from the block E!I ; other­
wise di is a parameter. 

From the form of the metric we see the variablesxl, ... ,xP 
coming from this block satisfy an equation of the form 

i 1 p~ 
i= 1 [llj;."i(Xi _xj>] , 

+ f [II.;#i(ei.-ej )] d. =E. 
~ llP (1 ) , P i=l 1=1 X -e; 

(4.6) 

Using the relation 

where 

TI = ( - 1)/+ 1 II' (x; - xj), 
i>j 

with i,j=ll, we see that the separation equations have the 
form 

[nP ; ] (dS;)2 P~" llj#(ek -e)dk 
(x - ej ) -. + ~ --'--'---.--'-;'---

j=l dx' k=l (x'-ek) 

+ [Ep(Xiy-l + i A1(X;y-/] = o. 
1=2 

(4.8) 

(iii) [IT (x6 
- g.)] (dS:)2 + d3 = 0; 

.=1 ds 

For the corresponding Helmholtz equation the situation is 
somewhat more complicated. With each p uj 

(j = 1, ... ,p + 1) we associate an index kj , which is calculat­
ed as follows: If the irreducible block occurs as the rth step 
down from the trunk of the graph and if we write out the S; in 
terms of our coordinates then kj is the number of coordinates 

for which x~: :::~·::t (rth column) occurs. The Helmholtz 
equation assumes the form 

where 

t; = 0 if k; = 1 and t; = j; (j; + k; - 1) if k; =11. The sepa­
ration equations become 

+ [U(U + p - l)(x;)P-l + It2X1(X;)P-I]} '1'; = O. 

(4.10) 

If we take the coordinates (3.21) and choose 

2 ; 
2 ll;= 1 (x - ej ) • 1 23 . 1 2 

2U, = , ] = , " I = , , 
J "j#j(ej-ej ) 

lls ; f, 
3V; = ;= 3 (x - I) , 1= 1,2,3,4, 1=3,4,5, 

llm#1 (1m -f,) 
(4.11 ) 

(x6 -g.) lW; = , t,s = 1,2, t =Is, 
(gt -g.) 

then the separation equations for the Hamilton-Jacobi equa­
tion are 

and for the Helmholtz equation the corresponding separation equations are 
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(i) 

(ii) 

(iii ) 2 d ( IT (X
6
-g')-6 

.=1 dx 

Once we are given the coordinates and have computed 
the associated separation equations for (I) and (II) we can 
also compute the Killing tensors corresponding to the sepa­
ration constants: In (4.8) we put AI =Ep. Given pUp two 
coordinatessj,sk are said to be connected if they both contain 
pUj • The corresponding Killing tensors are then calculated 
from the formulas (4.3) with I~ replaced by :I,>. I~, 
where the sum extends over all indices r connected to i and S 

connected to j. The Killing tensors correspond to I ~ -type 
operators of the next irreducible block of dimension m con­
nected further up the branch in question. For example, con­
sider the coordinates (3.21 ). The corresponding Killing ten­
sors are 

LI=Ln, 
i>j 

L3 = L' Iii' k,1 = 2,3,4,5, 
k>1 

L4 = (11 + h)I;s + (11 + A)1;s + (11 +/4)1;4 

+ (/2 + 13)ns + (h + 14)n4 + (/3 + h)n3, 
(4.14 ) 

Ls =Id~ fs + Id~~s + Id41;4 + 12/~is 
+ld4I i4 +AhI i3' 

L6 =n7' 
For the Hamilton-Jacobi equation these tensors have 

the constant values 

LI-EI> L2 -A1, L3-d2, 

L4-A2, Ls -A3, L6 -d3, 

and for the Helmholtz equation with Ijr~lii_the resulting 
operatorsLj (i = 1, ... ,6) havetheeigenvaluesLI-j(j + 5), 
I 2 - At> I 3 -/(/ + 2), I 4 -A2, I s-A3, I6-j~. 

V. SEPARATION OF VARIABLES ON Rn 

As was the case for SIt all separable coordinate systems 
in R" can be chosen to be orthogonal. 

Theorem: Let {x'} be a coordinate system on R" for 
which the Hamilton-Jacobi equation admits separation of 
variables and let q be the number of ignorable variables. 
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Then it is always possible to choose an equivalent coordinate 
system {x'} such that t j = 8iiH j- 2, i.e., the coordinates are 
orthogonal. Furthermore, the ignorable variables al, ... ,aq 

can always be taken such that 

Pal = II2, ... ,Pap = I 2p - 1,2p Pap + I 

= P2p + I ,···,Pa. = Pp+ q ' 

Proof: We use methods similar to those for S". Any ele­
ment of the algebra 'C (n) is conjugate to one of the two 
forms 

(1) L = /12 + b2I 34 + ... b1' 121'- 1.21' + PP21' + J> 

where P = 0 if n = 2V; and 

(2) L'=P". 

Let {x'} be a separable system with q = 1. It follows 
from the block-diagonal form that this system must be or­
thogonal. Furthermore, without loss of generality we can 
assume that Pal = L or Pal = L '.It is evident that the sec­
ond case can occur and is in accordance with the statement 
of the theorem. For the first case we can always choose the 
ignorable variable a I so that it is related to the Cartesian 
coordinates (YI"",y,,) by 

(Yt> .. ·,y" ) 

= (PI cos(a 1 + WI),PI sin(a l + WI)'"'' 

P1' cos(b1'a l + w1' )' 

P1' sin(b1' a l + w1')'P1'+ I +pal'Y21'+2""'Y")' 
(5.1) 

The infinitesimal metric then has the form 

ds2 = dp~ + ... + dp; + p~ (da l + dWI )2 

+ ... +p;(b1' da l + dw1' )2 + (dp1'+ I +p dal)2 

+d~1'+2+···+dYn. (5.2) 

If there is only one ignorable variable the coordinate system 
must be orthogonal and consequently 

v 

p~ dWI + L bjpJdwj +Pdp1'+1 =0. (5.3) 
j=2 

This is possible only if b2 = ... = b1' = P = 0 and dWI = o. 
(By redefining a I we then can take WI = 0.) Therefore if we 
have only one ignorable variable then P a = /12 or PIt . 

Now suppose we have q Killing vectors Pa,' i = 1, ... ,q. 
Then they must be of the form 
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S II 

LI = 112 + L b lI2/-1.21 + L r~Pm' 
i>p m=2s+1 

S II 

L 2 =/34 +L b7I2I-I.21+ L r".Pm , 
I>p m=2s+1 

S II 

Lp = 12p_I.2P + L bf I ZI -I.21 + L ~ Pm' 
I>p m=2s+1 

II 

Lp+I = L ~+IPm' 
m=Zs+1 

II 

Lq = L y'!"Pm • 
m=2s+ I 

The condition {L;,L I } = ° implies 

(5.4) 

b~11k_1 =b~ 11k =0, (5.5) 

for; = 1, ... ,p, 1= 1, ... ,q, k = p + 1, ... ,s. We are assuming that there is always one b ~ nonzero for each k and some i. 
Then 11k _ I = 11k = ° for k = p + 1, ... ,s and I = 1, ... ,q. The Cartesian coordinates are 

(YI, ... ,yn) = ~I cos(a l + WI),PI sin(a l + wl), .. ·,pp cos(ap + wp ),pp sin(ap + wp ), 

Pp+ I cos(t b~+ lal + wp+ 1)'''''Ps sin(i b~al + Ws), ± Y2s+ lal + W2s+ I'"'' ± r"al + w,,). 
I-I 1=1 1=1 1=1 

This set of candidate ignorable variables can take the neces­
sary block-diagonal form only if dw; = 0, b ~ = 0, for 
; = 1, ... ,p and k = p + 1, ... ,s. Also dW I = 0, for 
1= 2s + 1, ... ,n. We can thus assume that WI = ... = W = ° p , 

w2s +.1 = ... = W" = 0. This implies Ym = 0, for; = 1, ... ,q, 
m = 2s + q - p + 1, ... ,n, and we can also assume Ym = 0, 
for ; = 1, ... ,p and m = 2s + 1, ... ,2s + q - p + 1. Conse­
quently we can take 

LI = 112, ... ,Lp = 12p_I.2P' 

Lp+ I = P 2s + 1, .. ·,Lq = P 2s + q - P' 
(5.7) 

and there are no nonzero elements gap}, 1<; < j<q, in the 
metric. By a suitable E(n) motion we can always choose 
s = p. All separable coordinates in R" must be orthogon­
al. Q.E.D. 

To find all possible separable coordinate systems on R 
• n 

we proceed tn analogy with what we have done for S" . If we 
choose orthogonal coordinates in which none of the q .. are 
constant functions, then !J 

H~=X;[II(x;-xj)] (i=l, ... ,n), (5.8) 
j"",1 

where, as usual, 

" d~ = L H~(dxl)2. 
;=1 

The conditions Rijj; = ° are equivalent to (2.16) in which 
the right-hand side is zero. These conditions have the solu­
tion 
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(5.6) 

and 

1 ~ . / . _ = ~ a/(x')"- =g(x'). 
X; 1=0 

Again we look for choices of g(x) that are compatible with a 
positive definite metric. There are only two possibilities: 

n 

(i) g(x) = II (x - e;) (elliptic coordinates), 
;=1 

(5.9) 

"-1 
(ii) g(x) = II (x - e;) (parabolic coordinates), 

1=1 

X
I 2 n -I n <el<x <e2< .. · <x <en_I <x. 

These metrics give coordinates in n dimensions that are the 
analog of elliptic and parabolic coordinates, familiar in Eu­
clidean spaces of dimension n = 2,3. To these systems we 
may associate Cartesian coordinates by 

(i)'.2 2 II7=I(x
l
-ej ) • 

Yj = C , ] = 1, ... ,n, ceR; 
III"",j(el - eJ ) (5.10) 

(ii) Yi = (c/2) (Xi + .,. + x" + el + ... + e,,_I)' 

These two systems are fundamental for generating all sep­
arable systems on R". As an example of the relevance of 
these systems we consider the case when some of the qij 

functions are constants. We first treat, as we did for S", the 
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case in which the metric coefficients have the form (2.22) 
and (2.23). Then, as we have shown. these coefficients re­
duce to 

H;=[XiII(xi-xJ
)]( IT Uh)' 

}¥i h=k+1 

H7 = [XI n (Xl-X
m

)] • 
m,ol 

(5.11 ) 

The conditions Rkllk = 0 imply that the quadratic form 

dS,2 = ~ H7(dxl )2 

is that of a flat space. The remaining nonzero conditions are 
- 2- 2-H i- H j - Rijji 

( n ) [n 1 (u:,. )2] + II (71 > -- -- = 0 
1= k + I m =~ + I 4H;" (7 m ' 

(5.12) 

2 ui' _ (Ui)2 _ (Ui) 
UI u l (71 

X[~/IOgH7+H7 ~ 1 ] =0, (5.13) 
ax ~I H;" (Xl - xm) 

with Rijji as in (2.25). These equations are satisfied provided 
Rijji = - H7HJ and the function l:. = (ni= k+ I UI) is giv­
en as follows: 

N 

IT (xm 
- el)' 1= k + l, ... ,n, 

m=k+1 

l:. = nf= k+ I (Xl - em), for some m fixed, 
l:./",m (el - em) 

where N = n,n - 1. The functions l/Xi are given by 

(5.14) 

(5.15) 

1 k+ I . 

- = - 4 II (x' - ej). (5.16) 
Xi j=1 

The systems are related to Cartesian coordinates on Rn ac­
cording to 

(YI"'" Yn) = (WISI"",WISk + I ,W2"",Wn - k), 

where 

k2:+ I 2 ..2 n~= dXi - ej) 
s· = 1 and s, = , 

, J n (' ') i = I j "'i ei - ej 

nn-k (m ) 
(1
') •.. 2_ m=1 X -el Ilk WI - , = , ... ,n - ; 

nm"'l (em - el) 

(5.17) 

(ii) 
nn- k (m ) 

2 m= I X - el 
WI = , 1= 1, ... ,n - k - 1, 

nm"'l (em - el) 
(5.18 ) 

1 (n -k ) 
Wn _ k = - 2: xm + e l + ... + en _ k . 

2 m=1 

There exists an additional possibility that could be discount­
ed for Sn: UI = ai' 1= k + 1, ... ,n. This corresponds to the 
case in which the infinitesimal distance can be written 

(5.19) 

where dst is the infinitesimal distance for elliptic or parabol­
ic coordinates in Rk and d~ is a similar infinitesimal dis­
tance on R n _ k' We can mimic the procedure adopted for S". 
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The only essential difference is that the infinitesimal distance 
can be expressed, in general, as a sum of distances that can be 
identified with Euclidean subspaces. This reflects the fact 
that if {yI}. i = l, ... ,n l • and {z'},j = 1 •... ,n2. are separable 
coordinate systems in Euclidean spaces R", and R", with 
respective infinitesimal distances d,s7, ds'i, then the coordi­
nates {/,zj}, i= 1, ... ,n l ,j= 1, ... ,n2 , can be regarded as a 
separable coordinate system on R", + II, with corresponding 
infinitesimal distance d~ = d,s7 + ds'i. This is, of course. not 
the case for Sn' This property of Euclidean space coordinates 
naturally extends to separable coordinate systems {x~}. 
i = l, ... ,np,p = 1, ... ,Q, on Rp in such a way that 

ds2 = d,s7 + ... + ds~. 
In general the infinitesimal distance can be written as a sum 
of basic forms 

Q 

ds2 = 2: dS;, (5.20) 
J= I 

where 

dS; = ~ [n~'!' I (Xl - ef) ] d{IJ; + dO;. 
i= I nNi (ef - ef) 

(5.21) 

Here the dO; is the infinitesimal distance corresponding to 
elliptic or parabolic coordinates for a flat space of dimension 
NJ. Also n J <.NJ for elliptic coordinates with a strict inequa­
lity for parabolic coordinates. 

The d{IJ7 is the infinitesimal distance of some separable 
coordinate system on the sphere Sp[ and 

n = l:.¥= I (NJ + PI). To establish a graphic procedure for 
construction of separable coordinates we need only analyze 
one of the basic forms ds;. We should also mention here that 
if NJ = 1, then the basic form is written 

(5.21') 

A basic form could in fact correspond to elliptic or parabolic 
coordinates on R N[ and no d{IJ7 terms. We associate this with 
nI =Oin (5.21). 

For our construction we need only invent graphic repre­
sentations for elliptic and parabolic coordinates in R", the 
analog of the irreducible blocks on S". We adopt the follow­
ing notation: 

(1) elliptic coordinates < ell· .. ·Ien >, n> 1, 

(2) parabolic coordinates ( ell····1 en_l ), n>2. 

It is clear that only elliptic coordinates exist in one dimen­
sion. The graphical representation of a basic form corre­
sponding to the infinitesimal distance dS; has the appearance 

(i) <elle21···lenII···!eNI > ' 
f t t 
Pl P2 P~ 

Attached to each leg descending from the top block is the 
appropriate graph of the coordinate system on the Sp, giving 
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TABLE I. Separable systems for R3• 

Cartesian coordinates 

cylindrical coordinates 

elliptic cylindrical 

4) C!) CD parabolic cylindrical 

5):f 
1n 

spherical coordinates 

6)~ prolate spheroidal 

oblate spheroidal 

8) (9 
rffiI 

parabolic coordinates 

paraboloidal coordinates 

ellipsoidal coordinates 

11) q;:> 
@IlliJ. 

conical coordinates 

rise to the form daJ;. The general graph corresponding to a 
separable system then can be constructed as a sum of discon­
nected graphs for basic forms. We first illustrate this tech­
nique for the separable systems of R3 (see Ref. 21) (see Ta­
ble I). As an additional nonstandard example, consider the 
graph 

which defines a coordinate system in Rs. The coordinates 
can be chosen as 

i = 1,2,3, 

(5.22) 

where 
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We can set up a natural ordering for separable systems 
in Rn. For a given basic form we can suppose the natural 
ordering of the ei's in the leading irreducible block on the 
ordering of the Sp, branches and then write down coordi­
nates in a standard way. 

The ordering of the disconnected parts of the graph is 
presumed already given. There are equivalences (relating 
graphs of various coordinate systems) that we have already 
discussed for the n-sphere and, of course, there is an addi­
tional equivalence corresponding to the permutation of dis­
connected parts of a given graph. The separation equations 
can be readily computed also. For the elliptic and parabolic 
coordinate blocks 

(1) (ell···len >, 
(2) (ell· "Ien-l) , 

the Hamilton-Jacobi equation has the form 

where 

[ 

Nk. ] as 
Pi = IT (x'-ej ) -i' 

j=1 ax 

(5.23) 

with NI = n (elliptic coordinates) and N2 = n - 1 (para­
bolic coordinates). The separation equations are 

+ [E(Xi)n-1 +.± A,/xi)n- j
] =0. 

J=2 

(5.24) 

If we identify E = A, I' the constants of the motion associated 
with the separation parametersAI, ... ,A,n are 

n 

l; = L I~ + c2 L S; P;, (5.25a) 
i>j i= 1 

n 

I n - '" Sij 12 + 2 '" Si p 2 
I n - ~ n-2 ij C ~ n -I i' 

i>j ;= 1 

where 

. 1 L S'I =- e· ···e· 
l' "" . i., .... i(=F 

and the sum is over it, ... ,il #:i; and 
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" " 2n =C L {I1k.Pk} +C2SIP~ + L ils{ PJ, 
k=2 j=2 

" 21j = L CS~{Ilk,Pk} + L 1~ 
k=2 i>j;.2 

" +C2S2P~ +c2 L s!. PJ, (5.25b) 
j=2 

" zl: = L CS~{Ilk,Pk} + L SY1~ 
k= 2 i> j;.2 

" zl: = L CS!_2{IIk .Pk} + L SL3 I~ 
k = 2 i> j;.2 

+C
2S"_IPi, 

where the S ~ have the same significance as for elliptic co­
ordinates and 

For the corresponding Helmholtz equation the eigen­
values of a" are - k 2 (k real) and the Helmholtz equation 
reads 

(5.26) 

where f!jJ i = IT:! 1 (Xi - ej ). The separation equations are 

f?F ~ ( f?F a'l'i) ,,0/ i ax' ,,0/ i ax' 

+ [k 2(Xi)" + ~il Aj (Xi)" -j] 'l'i = o. 
J= Z 

(5.27) 

For a basic form such as dS; the separation equations for 
the Hamilton-Jacobi equation have the form 

[.II (Xi - ej )] (a.a.~~)2 + r ITj 
# (el - ej ) kJ 

J=I X 1=1 (Xi_el) 

+ [EI(Xi)Nlk -I + I~Z AI (Xi)Nlk -I] = 0, . (5.28) 

where kl is the constant value of the Hamiltonian on the 
sphere whose infinitesimal distance is dliJr. For the Helm­
holtz equation the corresponding contribution of this basic 
form is the equation 

~ 1 [~~(~f!jJ.PJ. a'II) 
1= 1 [IT} ",I (Xi - x j)] "f!) 1 axl " axi 

~[ITj"l(el-ej)], . 2 + k "I . hUI +Pi -1)'1' = -kl'll, 
1=1 ITj;\(xJ-el) 

(5.29) 

where 
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NI • NI • 

f!jJi = IT (Xi-ek)' PJ 1 = IT (Xi_ek)d.-\ 
k=1 k= 1 

{
Pk + 1, if k = 1, ... ,nl , 

dk = 'fk N 1, 1 = n l + 1, ... , I.' 

The separation equations are 

~~(~f!jJ.PJ. d'l'i) -V PJ; dx' "dx' 

+ [~ [ITj.,<k(ek -ej )] '.('. + . -1) 
k ( ; ) J, J, p, 

k= 1 X - ek 

+k~(Xi)NI.-I + ~ AI(x;)NI.-I] '1'; =0. (5.30) 
1=2 

In the example on Rs the separation equations for the 
Hamilton-Jacobi equation are 

[IT (Xi - ej )] (dS~)2 + (e~ - el ) kl + (e~ - e2) k2 
j=1 dX (x-e2) (x-e l ) 

+k 2Xi +AI=0, i=1,2, (5.31) 

and for the Helmholtz equation they are 

(5.32) 

For the elliptic case the only new prescription required is 
that P; be replaced by 'I.,P;, where the sum extends over all 
induces r connected to i. Similar comments apply to expres­
sions ofthe form {Ikl.PI}' 

are 
For our example the operators that describe separation 

LI =n2 +1~3 +n3' 

L2 =fll~3 + fzn3 + f3nZ' 

L3 =1;5' 
5 

L4= L P;, 
;=1 

3 

L6 = L (l;4 + 175 ) 
i=1 

(5.33) 

+c2[e2(P~ +P~ +PD +el(P; +P;)]. 

The operator L6 corresponds to the separation constant A I' 
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An inverse problem associated with N first-order equations in n + 1 dimensions, n > 1, is 
considered: Given appropriate inverse data T reconstruct the potential q (xo,x ), where q is an 
N XN off-diagonal matrix. Although q depends on n + 1 variables, it turns out that T depends on 
3n - 1 variables. This necessitates imposing certain constraints on T, i.e., T must be suitably 
characterized. The characterization problem for T is solved explicitly. Furthermore, the problem 
of reconstructing q is reduced to one for reconstructing a 2 X 2 matrix potential in two dimensions. 
The inverse data needed for the reduced problem are obtained in closed form from T. A method 
for solving two-dimensional inverse problems has recently appeared in the literature. 

I. INTRODUCTION 

In this paper we shall study the inverse problem asso­
ciated with the following system of N first-order equations in 
n + 1 dimensions: 

" 
'II Xo + 0' L JI 'II "I = q'll, 

1= 1 

O'=O'R+iO'[, 0'[#0, n>l, (1.1) 

where q(xo,x) is an N XN matrix-valued off-diagonal func­
tion in R" + t, decaying suitably fast for large xo, x, and the JI 

are constant real diagonal N XN matrices (we denote the 
diagonal entries of JI by J :, ... ,Jf). Alternatively, using the 
transformation 

'II(xo,x,k) = JL(Xo,x,k)exP[i It 1 kl (XI - UXc/I) ]. 

keen , (1.2) 

we shall study 

" 
JLXo + 0' L (II JL"I + ikl [JI,JL]) = qJL . (1.3) 

1=1 

We assume that n<.N, otherwise the entries oftheJI matrices 
will be linearly related and one can always reduce n by a 
change of coordinates. An inverse problem in this case is 
defined as follows: Given appropriate inverse data T, where 
Tis an N XN matrix-valued off-diagonal function of suitable 
inverse parameters, reconstruct the potential q. 

There is a twofold motivation for considering such an 
inverse problem. 

(a) If 0' = - 1 then the above reduces to the formula­
tion of a physically important inverse scattering problem: 
Given the scattering amplitude S(A,k), A, keRn, which is a 
function of the scattering parameters A, k, reconstruct q. 

(b) In recent years a deep connection has been discov­
ered1 between inverse scattering of linear eigenvalue prob­
lems in one spatial dimension and the initial value problem 
of certain nonlinear evolution equations in 1 + 1 (Le., one 
spatial and one temporal dimension). This is the essence of 
the celebrated inverse scattering transform (1ST) method. 
The inverse scattering of the time-independent Schrooinger 
and of the Dirac eigenValue equations2 have been used to 
linearize the Korteweg-de Vries (KdV), 1 nonlinear Schro-

dinger,3 modified KdV,2 and sine-Gordon2 equations. Sev­
eral other equations also have been linearized using similar 
principles.4

,s Recently a similar connection has been used to 
extend the above results to nonlinear evolution equations in 
2 + 1 (i.e., two spatial and one temporal dimension).6-IO In 
particular the inverse scattering of ( 1.3) with 0' = - 1 and 
n = 1 has been used to linearize the N-wave interaction 
equations in 2 + 1 (see Ref. 8), the Davey-Stewartson (DS) 
I (see Ref. 8) (a 2 + 1 analog of the nonlinear Schrooinger), 
and the modified Kadomtsev-Petviashvili (MKP) I (see 
Ref. 8) (a 2 + 1 analog of the modified KdV) equations. 
Furthermore the inverse problem of (1.3) with 0' = i and 
n = 1 has been used to linearized9 DSII and MKP II. How­
ever, in spite of the above success in 2 + 1, no physically 
interesting equation is known to be related to (1.3) for n > 1 
and 0'[ #0 [the N-wave interaction equations in n + 1 spa­
tial and one temporal dimension 11 are related to (1.3) but 
with 0'[ = 0]. 

The novelty associated with inverse problems in greater 
than two spatial dimensions (n > 1) stems from the fact that 
while the potential q(xo,x) depends on n + 1 variables, the 
inverse data T(kR,k[,m2, ••• ,m"), kReR", k[eR", mleR, de­
pends on 3n - 1 variables. This has important implications. 

(a) The inverse data must be appropriately constrained. 
This "characterization" of the inverse data is conceptually 
analogous to the characterization of the inverse scattering 
data in the multidimensional Schrooinger equation. 12- IS 

(b) The existence of "redundant" scattering parameters 
in the inverse scattering of the Schrodinger equation is used 
to reconstruct the potential in closed form in terms of the 
scattering amplitude function. This is the well-known Born 
approximation. 16 Can one use the redundancy of the inverse 
parameters here to also reconstruct q in closed form? 

In this paper, we do the following. 
(a) We derive an equation that characterizes inverse 

data [see (4.13)]: 

ATij( ) ...... Tij( ) wo,w..,.. wo,w,X 

_..!... r dX~R dX~lN fp [T )( wo,w,XP
') 

'IT JR2 XP - X;' 

(1.4) 

1737 J. Math. Phys. 27 (7). July 1986 0022·2488/86/071737·10$02.50 @ 1986 American Institute of Physics 1737 



                                                                                                                                    

where woER, weRn
, XECn 

- I are related to k, m [see (4.5)] 
and N is a quadratic function of T [see (4.1)]. That is, 
Tij(k,m) is appropriate inverse data iff the right-hand side 
of (1.4) is independent of X. Hence, Eq. (1.4) serves as both 
characterizing T ij and defining T ij. 

(b) We reduce the general problem of reconstructing an 
N X N potential q in n + 1 dimensions to one of reconstruct­
ing a 2 X 2 potential with entries qij, qjj in two dimensions. 
The inverse data needed for this reconstruction is precisely 
A .. A. .. 

TlJ, P'. This reduction makes crucial use of the existence of 
redundant scattering parameters. In this sense it is the ana­
log of the Born approximation. 

In more detail this paper is organized as follows: In Sec. 
II we introduce an eigenfunction I" (xo,x,k) bounded for all 
kEcn. We assume thatft has no homogeneous solutions, oth­
erwise the formalism presented here must be suitably modi­
fied in a manner similar to that used in two spatial dimen­
sions.9 The departure of I" from holomorphicity is measured 
byaftla"k, which, using a crucial symmetry condition of the 
underlying Green's function, can be expressed in terms of I" 
and appropriate inverse data T (see Proposition 2.3). Using 
aa formulation one may obtain I" and q in terms of T (Propo­
sition 2.4). The above formulas, which are natural general­
izations of the analogous formulas in two spatial dimen­
sions,8 provide a less effective way of reconstructing q than 
the one given in Sec. V but they provide the basis for the 
solution of the characterization problem. In Sec. III we for­
mulate a solution to the characterization problem that is 
analogous to the "miracle condition" of Newton for the 
characterization of the inverse scattering data in the Schro­
dinger equation13

: One has n different ways of reconstruct­
ing q in terms of T; furthermore it appears that the recon­
structed q depends on k. It is explicitly shown here that the 
equality of the inversion formulas is equivalent to q being 
independent of k (Proposition 3.1). Also this equality im­
poses constraints on T, which, however, depend onft (which 
in tum depends on T). Hence, this characterization is im­
plicit. In Sec. IV we derive an explicit characterization on T 
(Proposition 4.2). This crucial result uses Proposition 2.3 
and the existence of redundant inverse parameters. In Sec. V 
we use the results of Sec. IV and a suitable coordinate trans­
formation to reduce the problem of reconstructing q to one 
of reconstructing a 2 X 2 matrix potential in two spatial di­
mensions. This reduced problem was solved in Ref. 8. 

Equation (1.3) with u = i was first considered in Ref. 

17, but neither the characterization problem was solved, nor 
the reduction to a 2 X 2 problem in two dimensions wt'.s ob­
tained (in other words, some of the results of Sec. II for u = i 
are given in Ref. 17). Equation (1.3) was also considered in 
Ref. 18. In particular, the authors of Ref. 18 introduced for 
the first time the "T-equation," which is essentially Eq. 
( 4.1) of this paper. The introduction of this equation is, in 
our opinion, a new, fundamental idea in the field of inverse 
scattering and inverse problems: It provides a powerful ap­
proach to an explicit characterization of the inverse data. 
However, the above authors overlooked the fact that the 
coefficient ~jj of X appearing in the exponential defining Tij 

A .. 

is zero for both I = i and I = j. This fact implies that T lJ [see 
( 1.4) 1 does not equal the Fourier transform of qij and hence 
one cannot obtain a closed form solution for qij in terms of 
Tij. For completeness of comparison we also point out that 
here we use a slightly different formulation of the "symme­
try condition" of the underlying Green's functions. This 
leads to a somewhat simpler formulation of the T-equation. 

The physically interesting hyperbolic case u = - 1 can 
be considered as a limiting case U---+ - 1 + iO+. Although 
this limit exists (see Ref. 18), it turns out to be advantageous 
to consider the hyperbolic case directly. In Ref. 19 the fol­
lowing results are obtained: (a) the characterization prob­
lem of the inverse data is explicitly solved using the analytic­
ity of the underlying eigenfunctions; (b) the problem of 
reconstructing q is again reduced to reconstructing a 2 X 2 
potential matrix in two dimensions; and (c) a very simple 
relationship is found between the inverse data Tand the scat­
tering amplitUde function S. Actually if N = 3 then T = S. 

The results presented here are formal. Both the direct 
and inverse problems involve linear integral equations. One 
still needs to establish existence and uniqueness of the solu­
tion of these equations. Thus, strictly speaking, "solved" 
should be replaced by "formally solved." However, if 
q(xo,x) decays sufficiently fast forlarge xo,x and if its appro­
priate norm is sufficiently small, all equations presented here 
are well defined and we expect that these formal results can 
be made rigorous. 

II. THE INVERSE PROBLEM 

Proposition 2.1: The solution of ( 1.3 ), bounded for all 
complex values of k and tending to I for large k, is given by 

ftij(xo,x,k) = 8ij + sgn (uIJ;) r d~ ds exp[i,Bij(xo - SO, XI - SI' k)] 
2m' JR2 0 I (XI - SI) - uJ; (xo - So) 

X (q ft)ij(SO,SI,x2 - (XI - sl)J~/JL .. ·,xn - (XI - SI)J~/JLk), kECn
, (2.1) 

where,B ij is defined by 

(2.2) 

Equivalently ftij satisfies 
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where 

To derive the above note that the Fourier transform 

qJ(xo,m,k) = r d5 IJ1(Xo,5,k)exp( - im 5), 
JR" 

ofEq. (1.1) implies that IJ1 satisfies 

lJ1(xo,x,k) = c" r dm exp[i(mx - O'XomJ) ]A(m,k) 
JR" 

1 
C =--. 
" . (21T)" 

(2.4) 

+ c" IXo 

d50 r d5 dm exp[im(x - 5) - iu(xo - 50)mJ ](qlJ1)(xo,5,k) , 
- 00 JR2n 

(2.5) 

where A (m,k) is an arbitrary function of m,k. Hence j.t satisfies 

j.t(xo,x,k) = Cn r dm exp[i(mx - O'XomJ - uxokJ) ]A(m,k) 
JR" 

where 

" 
mx* L mlxl , 

1=1 

n A 

mJ* L mlJI' JJ= [JI,f], J'j J'fi, -J, e =e e . (2.7) 
1=1 

The exponential of the second term of the right-hand side of 
(2.6) involves 

" pij*i L {ml (XI - 51) 
1=1 

- u[J;ml + (I; -JDkd (Xo - 50)}' 

The real part of pij is given by 

" P~ = L [uIJ;ml + (I; -J1)(ukl )d(xo-50) 
1=1 

* [uIJ;m l +P~](Xo-50)' 

The second term of the right-hand side of Eq. (2.6) also 

involves the integral f~ co d50 f~ co dm l , which equals 

for arbitrary MI' Since the third term above can be canceled 
out of (2.6) with an appropriate choice of A (m,k), it follows 
that one can always achieve boundedIless of j.t for all com­
plex values of k: Choose M I such that P ~ is less than zero in 

Sx~ 00 dsoandgreaterthanzeroinS~ dso' i.e.,MI = - P~/ 
(u IJ; ) for u IJ; > 0 (otherwise change sign). The m I inte­
gration can be performed explicitly: The coefficient of m I in 
Pijis i[ (XI - Sl) - uJ; (xo - 50) ], hence this quantity will 
appear in the denominator. Also pij evaluated at m l = MI 
becomes 
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i L ml(xi -51) - (XI -51)-+-{ 
" Ji 

1=2 J I 

+/3ij(XO - 50,x1-51,k)} . 

Hence (2.6) yields Eq. (2.3). Equation (2.1) follows from 
Eq. (2.3) by using the fact that the integral over dm 2 is a 
product of 6 functions with arguments 51 = XI 
- (XI - 51)J;IJ;. 

Remarks: (1) Equation (2.1) with n = 1 is equivalent 
to the analogous one of two-spatial dimensions, e.g .• Eq. 
(4.4) of Ref. 9. Equation (2.1) actually appears simpler be­
cause the m I integration was not carried out in the two­
spatial dimensional case. 

(2) Equation (2.1) is also equivalent to that presented 
in Ref. 18. The only difference is that the exponential ofEq. 
(5) of Ref. 18 involves (XI - 51 )IJ; instead of 
(XI - 51)IJ; of (2.1). However, these two terms are equal 
due to the presence of the underlying 6 functions. 

(3) By letting XI-XI + J:xIIJ;, 1= 2, ... ,n, in Eq. 
(2.1) one may obtain a more symmetric equation for j.tij: 

ij( J~ J~ ) 
j.t XO,xI,x2 + J; XI'''',x" + J; XI 

=6ij+ii 

"( J~ J~ f: k) x (qj.t)" 50.51,x2+ J; SI ... ·,x" +Jf~I' , 

(2.8) 
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where ii is defined in (2.1). 

(4) Equation (2.1) suggests that 

p (xo,x,k) -p XO,xI,X2 -XI -. , ... ,x" -X.-. ,k . if _ if( J~ J~ ) 
J'I J'I 

It also suggests that in the proper coordinate system, Eq. 
( 1.3) should be reduced locally to one in only two dimen­
sions. This is indeed the case: Equation (1.3) in component 
form becomes 

" " p!, +u L J;pgl +iu L k,(J; -J{)pif= (qp)if. 
1=1 1=1 

(2.9) 

Let 

-i J~ 2 ::Or =Xr -XI -, r= , ... ,n. 
Ji I 

(2.10) 

i.e., 

a a a a 
r=2, ... ,n, 

aXo = aao' aXr = aa~' 
a a "J~ a 

aXI = aEI - r'?2 Jf" aE~ . 
Then (2.9) yields 

" p~o +uJ~P~1 +iu L k,(J; -J{)pif= (qp)if. 
1=1 

(2.11 ) 
(5) Equation (2.11), as well as Eq. (2.1) and (2.8), 

indicates that the direct problem associated with Eq. (1.3) is 
locally two dimensional. However, the two-spatial dimen­
sional results of Ref. 8 are not directly applicable due to the 
shifting in the arguments. Let us illustrate this for the 2 X 2 
case in three dimensions: 

pll(XO,xI,x2,k) 

= 1 + gll(qlp21 ) (S0,SI,x2 - (XI - SI)J ~/J:'k), 

p21 (xo,xI,x2,k) 

=~I(ipll)(S0,SI,x2 - (XI - SI)J~/Ji.k). 

Clearly p II appears with different arguments in the two 
equations. However, one may still obtain a solution by iter­
ation. The same is true for the equations corresponding to 
(2.8). 

The next step is to relate apl aTe with p. For this purpose 
the following proposition is important. 

Proposition 2.2: (a) The function {3if defined by (2.2) 
satisfies 

~ exp(i{3if(xo,xl>k)] 
akp 

and 

k ~ = kr' r = 2, ... ,n . 
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(2.12) 

In the above /lif(k) denotes {3if(xo,xl,k) and kf =kYR 
+ikt= [kfR,kt]. 

(b) The functions{3 if and ai, defined by (2.2) and (2.4), 
respectively, satisfy 

a'(m) +/llj(k) -ai(M) -/lif(k) 

=a'(m-M) +/lli(,iif(k,M»), (2.14) 

where 

(2.15 ) 

To derive Eq. (2.12) just use alak=!alakR 

- (1I2i)a lak]. To derive Eq. (2.13) note that 

{31j(k) - /l if(k) 

= i .!. [(J~ -J~)xoluI2krJ 
r= I u] 

(
J

I Ji Ji Ji) ] __ r __ r __ ~ +_~ X (uk)] . 
JI JI J' J' I r 

I I I I 

But 

JI Ji Ji Jj 
_r __ r __ r +_r 

J~ J~ J~ J~ 

Thus 

J~ -J~ 

J~ 

/l if(k) - /l if(k) 

(J~-J~) (J~-J~) 

J~ J; 

= i .!. [(J~ - J~)xoluI2krJ 
r= I u] 

(2.16) 

Hence/l if(k) - /lif(k) = /lli(k if), where all the k's are in­
variant except kl> which satisfies k f = kl , 

/ / 

To derive Eq. (2.14), note that its left-hand side equals 

Hence, Eq. (2.14) follows, where,i if is defined by,i 1 = k] 
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for all k's, 

(UA.~>r = (Uk,)l +M" r=2, ... ,n, 

.. .. ~ J~ 
(UA. Y>l = (ukYh - k M, -I • 

,=2 J I 

Using the above relationships, ap,lakp, i.e., the depar­
ture from holomorphicity of the eigenfunction p" can be 
evaluated in terms of p, and T. 

Proposition 2.3: Letp,iibe defined by Eq. (2.1). Then 

ap, 
--- (xo,x,k) 
akp 

= L y(J~ - J~ )exp[i,Bii(xo,xl,k)] 
i,} 

XC"_I i dm2exp[iai(x,m)] 
B"- 1 

X Tif(k,m)p,(xo,x.A. if(k,m»)Eii ' (2.17) 

wherepif, a i and A. if are defined by (2.2), (2.4), and (2.15), 
respectively; Eif is an N XN matrix with zeros in all its en­
tries except the (fih, which equals 1; and yand T/j are given 
by 

y*o/417'iIJ~Ull , 

Tij(k,m)*i dsodsexp[ -iPij(so,sl,k) 
R,,+I 

- iai(s,m)] (q p,)/j(so,s,k) . (2.18) 

To derive Eq. (2.17) note that ap,/jlakp satisfies the 
same equation as p,ii, where the forcing 6/j is replaced by 

.. } [ ~Q/j k ] 
C,,_ d(J~ -J p)exp ip (XO,xI' ) 

X L.-I dM 2exp[iai(x,M)T/j(k,M)] . 

Usingp, = l:i,} P,ijEif it!ollows that the forcing ofthe equa­
tion satisfied by ap,lakp is given by the above times E/j' 
Hence 

(2.19) 

where Nif is a matrix-valued function satisfying an equation 
similar to that of p, but with different forcing: 

if p,(xo,x,k) =] + (Op,)(xo,x,k), 

then N.. = ei(pij+a')E .. + ON.. (2.20) 
IJ IJ IJ ~ 

Equation (2.20) implies that Nif = (O, ... ,Nt, ... ,O), where 
the components of the vector Nt satisfy 

N g (xo,x,k,M) 

= exp(i(p if(xo,xl,k) + a i(x,M»)]6if 

-r lj + (G g N /j) (xo,x,k,M) . (2.21 ) 

MUltiplying by the negative of the exponential appearing in 
(2.21) and using (2.14) it follows that Ng(xo,x,k,M) 
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= p,1I(xo,x.A. ij(x,M»). Hence 

N/j = [O'''',I.I/(xo,x.A. /j),O, ... ,O] ---j 
= p, (xo,x.A. /j)EIJ . 

Using the above in (2.19) we obtain (2.17). 
Proposition 2.4: The potential q (xo,x) of Eq. (1. 3) can 

be reconstructed from 

p = 1, ... ,n, (2.22) 

whereap,lakp is evaluated by Eq. (2.17) in terms of T/j, p,ii. 
The eigenfunction p, is reconstructed by 

p,(xo,x,k) =] +..!.. i dk; dk; 
17' R' R I 

(ap,lakp ) (xo,x,kl, ... ,k ;, ... ,k" ) 
X , 

kp -k; 

p = 1, ... ,n. (2.23) 

To derive Eq. (2.23) invert ap, in the variable kp • To 
derive Eq. (2.22) note that if one seeks an asymptotic expan­
sion of p, for large kp in the form 

p, =] + P,I (xo,x,kl,· .. ,kp _ I ,kp+ I , ... ,k" )/kp + O( 11k;), 

one obtains, from (1.3),q = iuJp,I' Thisandlargekp asymp­
totics of (2.23) imply (2.22). 

Remarks: (1) The forcing of the equation for ap,1 ak 
also can be written as 

L y( J~ - J j )exp[ipii(xo,xl,k)] 
I,} 

Xt if(k;X2 -XI JVJL ... ,x" - XI J~/J~ )Eij' 

where 

t lJ = C,,_I L'-I dm2 exp[iai(x,m) )TIJ(k,m). 

(2) The results of Proposition (2.4) can be directly veri­
fied also (see below). 

III. ON AN IMPLICIT CHARACTERIZATION 

Equation (2.23) indicates that there exist n inversion 
formulas for p,. Furthermore Eq. (2.22) indicates that, un­
less the inverse data TIJ are appropriately constrained, the 
reconstructed q will depend on k. We now show explicitly 
that q being independent of k is equivalent to the equality of 
all the inversion formulas. This is a direct consequence of the 
following result. 

Proposition 3.1: Let us define the operators L k ,F" .. ",k _ kp 

by 

(3.1 ) 
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(3.2) 

where 

~(xo,x,k,m)*/3ij(xo,xl,k) +ai(x,m), k P' denotes k l,k2, ... ,k;, ... ,k". (3.3) 

We use F" .. ",k _ kp to denote that F depends on xo,x,kl , 1= l, ... ,n, I =Fp. Then 

[Lk,F""""k _ kp] g(xo,x,k) 

= iu Jp i dk;R dk;1 L y( J~ - J t)C,,-1 i dm2 exp[iE'"](xo,x,kP',m)] Tij(kP',m) g(xo,x.A. ij(kP',m»)Eij' (3.4) 
11' R' i,] Rn

-' 

To derive Eq. (3.4) note that the term Lk (Fx"x,k _ kp g) involves 

[(
a " a). ] (a "a) " i -+u L JI - E'"J(k P') gEij + --+u L J1- gEij +iu L kl[J1,gEij]' 

axo 1= I aXI axo 1= taXI 1= t 

while the term F x..",k _ kp (Lk g) involves 

(a ~ a) ~ "k' -+u ~JI- gEij+iu ~Ar( P)[JI,g]Eij' 
axo 1=1 aXI 1=1 

Two of the above expressions cancel out, also, since (gEij)i'f is nonzero only ifj = j', in which case it equals gN, 

" " L kl(Jf -J{) - L kf'(Jf -J{) = (kp -k;)(J~ -Jf), 
I-I 1= t 

which implies Eq. (3.4). 
Remarks: (1) The above proposition implies that the direct linearizing method2o

,21 is also valid here. The relevant result 
is directly analogous to that of the two-dimensional case. 9 

(2) q = [Lk,F """"k _ kp] 1', P = l, ... ,n, where the pth expression is independent of kp' Suppose that q is independent of 
kp,kr, then [Lk,F""""k _ kp] I' = [Lk,F" .. ",k_ k,] 1" Hence (F"",,,,k_ kp) I' = (F" .. ",k_ k) 1', i.e., thepth and the rth inversion 
formulas are equal. Similarly, ifthepth and the rth inversion formulas are equal, q is independent of both kp and kr. 

IV. ON AN EXPLICIT CHARACTERIZATION 

Proposition 4.1: (a) Assume thatap./akp is given by Eq. (2.17) and that Tij(k,m) is given by (2.18). Then 

L~Tij(k,m) = - Itt C"_I Ln_,dM 2 T i1 (AIj(k,M),m -M)TIj(k,m) 

X [(J~ -J t)(J~ -J~) - (J~ -J !)(J~ -J~>] *N~p [T](k,m), (4.1 ) 

where 

ij. i . a i J a L rp ~ (Jp -JP --=- - (J r - J r) -_-. (4.2) 
akr akp 

(b) Assume that ap.lakp is given by Eq. (2.17) and that a 2p./akr akp is symmetric with respectto r,p. Then Tij(k,m) 
solves (4.1). 

To derive Eq. (4.1) note that 
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.. if ( d d'l- [ '-1i l-l-k ]{ [(Ji JJ)ap(k) (JI JJ)ap(k)]}iJ L ~T' = JR-+ 1 SO ~I exp -IE'(~O'~' ,m) q p - p ak, - , -, akp 

=C,,_ I L-+I dSods, exp[ - itJ(So,S,k,m)] {L--I dM
2 f.1 r exp[ie'(so,S,k,m)] 

X Tif(k,M) [(J~ -J t)(J~ -J!) - (J~ -J !)(J~ -J t)] (qp)(it if (k,M»)Eif r. 
Since (pEif)iJ is nonzero only if j=j', evaluate the above at j=j'. Also, Eq. (2.14) implies 
- t' (k,M) + t' (k,M) = _Pil(it if(k,M») - al(m - M), and, since 

( dSodS, exp[ - iP if(.it if(k,M»)]exp[ - ial(m - M)] (qp)li(it if(k,M») = Tli(it lJ(k,M),m -M), 
JRft + 1 

Eq. (4.1) follows. 
To derive the second statement of Proposition (4.1) first note 

L ~ei/JQ(k) = 0, L~ p(it iJ(k,m») = L ~ p(K), (4.3) 

piJ(k) + ai(m) + P,"i(it iJ(k,m») + a'"(M) =pfJ(k) + af(M + m), it fI(it iJ(k,m),M) =it (}(k,m + M). (4.4) 

Equation (4.3a) follows from (2.12). Equation (4.3b) means that, with respect to the operator L,,p,p(it iJ ) should be treated 
as if its k 's were not shifted; it is an obvious consequence of the definition of it iJ. To derive Eq. (4.4a) use (2.14) to substitute 
for 

Pfl(itiJ(k,m»=a'"(M) +P'"}(k) -ai(m) -PiJ(k) -a'"(M-m). 

Equation (4.4b) follows from the definition of it iJ: 

itllV (km) =k, J~ _ O'R k, (J~ -J{) _ ~ (k + O'R k) J~ -J{ _ ~ ml!.l. 
R' R J' 0' I Ji k IR h Ji k JI 

I] I 1=2 0'] I 1=2 I 

Hence, 

itfi(itiJ(km),M)=!l{k J{ _ O'R k (J~ -J{)_ ~ (k + O'R k) (J~-J{) _ ~ m J~} 
I R ' Jf IR JI II Ji k IR II Ji k I Ji 

I I 0'] I 1=2 0'] I '=2 I 

Let 

¥.:.. !2p _ _ ak!2Pak- =C,,_l ~ (R __ ldm2YL~{ei~(k,m)TiJ(k,m)p(itiJ)Eif}. 
ak, akp p' I,J JI1 

Using (4.3) it follows that 

¥=C,,_l L ( dm2yexp[it}(k,m)](L~TiJ)p(itiJ)EiJ 
I,) JR-- 1 

+ C2,,_2 i'~' L20-2 dm2 dM2 Y1"" exp{i[tJ(k,m) + E"(it ij(k,m),M)]}TiJ(k,m)T"(it iJ(k,m),M) 

+ C2" -2 I'~' L2_-2 dm
2 
dM 2 Y'Y'" exp{i[tJ(k,m) + E"(it iJ(k,m),M)]} 

X TiJ(k,m)T"(it iJ(k,m),M)1Tp(it i'/(it iJ(k,m),M)E"EiJ , 

where1T* (J~ -J j)(J~ - J!) - (J~ - J !)(J~ - J t). SinceE,.,EiJ is nonzero only ifi =j', in which case it equals E'J' it 
follows that the above should be investigated at i = j'. Then the first term of ¥ involves 
Jdp 'Y'" exp[iE'J(k,p)](L ~T'J(k,p)lu(it fJ(k,p»), while the second term involves [using Eq. (4.4) and letting m + M = p] 

f dp dm 'Y'"yexp[iE'J(k,p)] TiJ(m)T'"I(it iJ(k,m),p - mlu(.it fJ(k,p»). 
JR' 

Thus ¥ = 0 implies the "T-equation" (4.1) [to obtain the identical variables of (4.1), let i'_i, i-I,p-+m, m-M]. 

1743 

We now derive an equation providing an explicit characterization for the inverse data T. 
Proposition 4.2: Let wg,wi(,w" 1= 2, ... ,neR1 andx1eC' , 1= 2, ... ,n, be defined by 
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" P _Ji "P ii. ~ r r(k) ~ r WI ::;:: - ~ i a r / - ~ mr -i ' 
r=1 a/J I r=2 J I 

Assume that 

(J~ -J{)(J~ -J;)=/=(J; -J{)(J; -J;), for all distinct i,j,randp=/= 1. 

X
ii. kl 
I • -J-J--J-'-. , 

1- I 

1= 2, ... ,n. 

(4.5) 

(4.6) 

For convenience of writing we usually suppress the superscripts i,j in wo,wl, X. Let k denote kl, ... ,k", m denote m2, .. ·,m", X 
denote X2,""X", w denote wl, ... ,w". Then we have the following. 

(a) The inverse ofthe transformation k,m-wo,w, X is given by 

k J i i 12k ~ i i (q/laI2)wo+l:~=lwrJ~ 
I=XI( I-J I ), ml=wl, = , ... ,n, 1= - ~(Jr-Jr)Xr+ . I • 

r=2 J{ -J I 
(b) In the new coordinates, Eq. (4.1) with r = 1 becomes 

aTii .. 
-=-(wo>w,X) =NYp[T](wo,w,X), p=2, ... ,n. 
aXp 

( c) In the new coordinates 

Tii(wo,w, X) = i.+ I dSo ds exp[ - i(waSo + WS)] (qf.t)ii(So,S,wo,w, X), where WS = rtl wrSr· 

(d) Let 

f.tY*f.tlj(XO,x,wg,wii,Xii ), flY = lim 1'7-
IXpl-oo 

Then the M satisfy 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

~fI (a/JD i dxodx'dm2exp[i{(xo-xo)wo+(x-x')w}] 1': (xo,x,wo,w) =sgn . C,,_I qii(xo,x')PP(xo,x',wo,w), 
2m R2

• Xl - XI - aJ; (xo - xo) 

~ .. sgn(a/ J () i dxo dx' dm2 qJl(xo,x') flY(xo,x',wo>w) 
f.tfJ(xo,x,wo,w) = 1 + . c" _ I , flY = 0, for all I, I =/=i, I =/=j. 

2m R2ft Xl-XI -aJ{(xo-xo) 

(e) lim Tii(wo,w, X) = i dSo dS exp[ - i(wrlo + WS) ]q'J(So,S) jl/1(So>S,wo,w) * Tii(wo,w). 
IXpl-oo Rft + I 

(4.11) 

(4.12) 

(0 The basic characterization equation is given by 

Aii ii 1 i dX;R dX;INYp[T](wo'w,~') 
T (wo,w) = T (wo,w,X)--

1T R2 XP - X; 
(4.13) 

where~' denotes X2,···,Xp-1 ,X;,XP + I , .. ·,x,,· 
The transformation k,m-wo,w, X is motivated by the following requirements: 

... .. a 
P 'J(xo,x .. k) + a'(x,m) = WoXo + wx, LYp = -=-. 

aXp 

(4.14) 

Equations (4.14) also imply (a)-(c) above. To derive (d) of Proposition 4.2, note that Tii depends onf.tlj. Thus in order to 
compute Tii (wo,w), one needs f.tlj(x~,wg,wii'Xii) for large,rl. The eigenfunction f.tlj satisfies (2.3), hence the relevant 
exponential will involve P Ij + a l in the new coordinates: 

l" I ~ { [J{(J~ -J~) +J~J{ -J~J;] } J{ -J{ P V(XO,xl'WO'W,X) + a (x,w) = ~ Wr Xr - JI (J 1 P Xl - J J i 
r=2 I 1- I) I-J I 

where 

e1!i*(J~ -J;)(J~-J!)-(J!-J~)(J~ -JO. 

( 4.16) 

As lxi-ex> the relevant exponential tends to zero unless Ef,i 
= 0, which occurs for I = j and I = i. Hence, one is left with 
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(4.15 ) 

only two nonzero contributions: For 1 = j, in which case 
P 11 + a J = 0, and for 1 = i in which case P Ij + a i 

= xowo + wx. Thus flY satisfy Eq. (4.11). Equation (4.12) 
follows from (4.9), (4.11), and the factthat q'1 = O. To ob­
tain (4.13) just invert a and use (4.12). 

Remarks: ( 1) Equation (4.12) can be thought of as the 
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analog of the Born approximation of the SchrOdinger equa­
tion. However, because ~/ = 0, one does not simply obtain 
the Fourier transform of qi}. 

(2) Suppose that the JI's are constrained via 

JI -Ji JI -Ji 
p p - p p 

JI-Ji- JI-Ji' 
r r r r 

p,r = 1, ... ,n, i,j,1 = 1, ... ,N. ( 4.17) 

Then the assumption (4.6) is violated and the above proce­
dure fails. However, in this case the whole problem of char­
acterization may be bypassed: Both Eqs. (1.3) and (2.1) 
indicate that one may introduce a single parameter k, which 
is a combination ofthe kl's iff 

n 

L (J; - J {)kl = (J~ - J~ )k, for all i,j = 1, ... ,N. 
I 

( 4.18) 

If N = 2, or if Eqs. (4.17) are valid, then the solution k of 
Eqs. (4.18) always exists. To fix ideas, consider N = 3. Then 
Eqs. (4.18) are solvable iff 

:I~ (J: - J;)kl :I~ (J: - n)kl :I~ (J; - Ji)kl 
= = 

n-J: 
( 4.19) 

However, ifEqs. (4.17) are valid then 

J;-Ji 

J:-Ji J:-J: Ji-J: 
Multiplying the above by kl and summing over 1 we obtain 
( 4.19). The general N case is a trivial extension of the above, 
where one uses 

(J; -J{)/(J~ -Jf) = (J~ -J()/(J~ -J{). 

(3) Remark (2) implies that if N = 2 or if the JI's sa­
tisfy (4.17) then one can always introduce a single k. Hence, 
the eigenvalue problems associated with these cases should 
be reducible to two dimensions. This fact is used below since 
the reduced system (4.11a) and (4.11 b) corresponds to 
N=2. 

( 4) The N-wave interaction equations are associated 
with ( 1.3) when 0' = - 1 and the JI's satisfy ( 4.19). There­
fore, it is not surprising that these equations always can be 
reduced to two dimensions. 19 

V. THE RECONSTRUCTION OF q 

We now present a more efficient way of reconstructing q 
than that of Sec. II. Equations (4.11 a) and (4.11 b) define a 
system of two equations for the eigenfunctions M,{IP in 
terms of the 2X2 matrix potential with entries q'i,qii. We 
consider the inverse problem associated with this system: 
what are the necessary inverse data needed for the recon­
struction of qi},qi7 In what follows we show that (a) one can 
always introduce a new, single keel [this is consistent with 
Remark (3) above, since in this case N = 2]; (b) with a 
proper change of variables, the above system can be reduced 
to two dimensions; and (c) the inverse data needed for the 

A .. A. 

solution of this problem is simply related to T I), TIl. 
Proposition 5.1: Let 
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JiJI _JiJl 
• 2 r r 2 

a r • JIJi J1JI' 
I 2 - I 2 

JP!-J{J~ 
Pr = , r= 1, ... ,n, (5.1) 

JPi -J{J~ 

where for convenience of writing we have suppressed the 
dependence of a" p, on i,j. Let soeR, seRn, 

Xo = SO, XI = sV X2 = S2' (5.2) 

XI = SI + alSI + PIS2' 1 = 3, ... ,n. 

Then we have the following. 
(a) The system (4.11a) and (4.11b) becomes 

Ai} A 0'1 J~ i d'f:o' d'f:o' #1 (so,s,k) = sgn --. !> 0 !> I 
2m R' 

X[SI-S; -O'J~(SO-S~>]-1 
A. A 

xexp[ jpi}(So - S ~'SI - S ;,k)] 

X q'i PPI5 ~,S; ,S2 

- (SI - S;) JVJ~ ,S3, ... ,Sn,k), 

(5.3) 

where 

. J~ - J {[ I 12k (O'k)1 ] . xoO' l- X I--
i
-· 

0'1 J I 

(5.4) 

(b) Ti) in the new coordinates becomes 

Ti}(k,m) = r ds~ds'exp[-fPi}(s~,s;,k) JRn + 1 

+ m{s 2 - s; ~~ ) + rt3 mrS; ] 

(5.5) 

where 

n 

m2*m2+ L mrP" 1= 3, ... ,n. (5.6) 
r= 3 

(c) The inverse data associated with (5.3) and the anal­
ogous problem for Pl, P,JI are given by Ti},T 11. Let 

(5.7) 
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Then 

TIi(k,S2 - SI JUJ; ,S3,···,Sn) 

* r dS 0 ds; exp[ - iPIi(S o,s;,k)] 
JR' 
x (fjifiP)(s o,S; ,$2 
- (SI - S; ) JUJ; 'S3"",Sn,k). (5.8) 

To derive the above results note that the definitions 
(5.1) and (5.4a) are motivated from the fact that we are now 
dealing only with two equations: 

,. 
fit + U L {J; fit + ik[ (J; - J I) fo7} = qli Mi, 

[=1 

n 

fll!. + U L J 1 fL~ = qji fJ,Y. 
[=1 

(5.9) 

Hence all the J[ 's are linearly related and furthermore one 
can introduce a new k [see Remark (3) above]: 

J~ =arJ; +f3rJ~, J!=arJ{ +f3rJi, 

k(J; -J{)* i (J~ -J!)kr· (5.10) 
r= 1 

Substituting (5.lOa) and (5.lOb) in (5.9) we are motivated 
to introduce new variables So,S, 

To derive (a) from (4.11) we calculate (xo - Xo )wo 

+ (x - x')w in the new coordinates: 

WoXo + wx =pli(So,SI,k) 

+ m2(S2 - SI J:) + i mrSr. 
J 1 r=3 

( 5.11) 

Hence Eqs. (4.11) imply (5.3), since both Jacobians from 
(xo,x) to (So,S) and from m to m are equal to unity. 

Equations (5.10) and (4.9) imply (5.5). Multiplying 
Eq. (5.5) by 

Cn_ 1 exp[im2($2-SIJUJ;) +il:~=3mrSr] 

and integrating over Rn - 1 we obtain that T Ii satisfies (5.8). 
However, the inverse data T Ii and the analogous T ji are 
precisely what is needed for solving the inverse problem as­
sociated with (5.3) and the analogous equations obtained by 
interchanging i and j. 

Remarks: (I) The above results are consistent with the 
fact that, in the coordinates (5.2), Eqs. (5.9) reduce to two 
dimensions. 

(2) The two-dimensional problem is solved in Ref. 8. 
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A class of solvable second-order ordinary differential equations with variable 
coefficients 

Ken Takayamaa) 

Texas Accelerator Center. The Woodlands, Texas 77380 

(Received 7 October 1985; accepted for publication 14 March 1986) 

This paper treats the problem of solving the second-order ordinary differential equations with 
variable coefficients of the form d 2X/ dt 2 + (q I (t) + .1q2 (t»)x = O. It is shown that if the initial 
equation d 2X/ dt 2 + q I (t)x = 0 is in analytically solvable form and q2 (t) is the inverse square 
function of a solution for the nonlinear auxiliary equation !x d 2X/ dt 2 - 1 (dx/ dt) 2 + q I (t )x2 

= 1, there are exact solutions. Using an inner relationship between solutions for the initial 
equation and the auxiliary equation, an infinite sequence of analytically solvable differential 
equations is constructed step by step. Typical examples of such a sequence are shown. 

I. INTRODUCTION 

Most physical problems exhibit certain essential fea­
tures that seem to preclude exact analytical solutions at first 
glance. Some of these features are second-order ordinary dif­
ferential equations with variable coefficients. In order to ob­
tain information about solutions of such equations, we are 
usually forced to resort to approximations, numerical solu­
tions, or combinations of both. Each has disadvantages; for 
instance, effectiveness of perturbation methods (approxima­
tions) is restricted to the case where a small or large param­
eter appears in equations. Meanwhile, numerically solving 
equations is time consuming, and obtained results scarcely 
indicate clear dependences of them on parameters involved 
in an equation. 

It is most desirable to derive analytical solutions; how­
ever, this struggle for solutions is usually too exhaustive. If, 
before approaching a solution, it is realized whether or not 
the equations in question have exact analytical solutions, one 
can avoid unnecessary work. To the author's knowledge, 
there are no general methods to distinguish between the two. 
However, it still seems possible to classify a possible type of 
equation that has exact analytical solutions. In this paper, a 
method to build this type of equation systematically is pre­
sented. An infinite sequence of equations is derived in a kind 
of recursion form; well-known differential equations like 
Bessel equations, solutions of which are in analytical form, 
are taken as the initial equation. 

II. BASIC IDEA 

We consider the exact solution of 

d 2x 
dt 2 + [ql(t) + .1q2(t)]x =0, (1) 

whereql (t) is continuous in the interval of interest, q2(t) is a 
positive and twice continuously differentiable function, and 
A is an arbitrary constant. Using the Liouville and Green 
transformation, 1 

s = ;(t), y = ",(t)x(t), (2) 

0) On leave from KEK, National Laboratory for High Energy Physics in 
Japan. 

we change (1) into 

d 2y + -J-J ~ _ 14'" )dY 

tJs2 f\ '" tis 

1 [ """ - 2i/J2l.. + ~2 qt + .1q2 - ~ r = 0, (3) 

where overdots denote differentiations with respect to t. 
Choosing; and '" such that 

~ - 14"'/'" = 0 and q2 = ~2 (4) 

or 

;=f[q2(t)P'2 dt, "'= [q2(t)P'\ (5) 

we reduce (3) to 

d2
y + (A + qt _ il2 + -1.. irl' .. = O. (6) 

ds2 q2 4q~ 16 q~r 
For later convenience, using the transformation q2 = P -2, 
we write Eq. (6) as follows: 

~; + [.1+(fPp-fP2+ qt (t)P
2
)]y=0. (7) 

If the term parenthesized in Eq. (7) is constant, Eq. (7) has 
two independent solutions; that is, 

Yt.2 = exp( ± i~.1 + C ·s) 

with 

C = lj3{J - V3 2 + ql (t)P 2
• 

(8) 

(9) 

Here, note that the auxiliary function2 of the second­
order ordinary differential equation of the form 

x + ql(t)X = 0 (10) 

is well known to satisfy 

lj3P -liP + ql (t)P 2 = 1. (11 ) 

It should be noted that there is the following relationship 
betweenpin this paper andp and h in Ref. 2:/3 = p2, h = 1. 
Its solution is described in terms of the independent solu­
tions X~.2 ofEq. (10) as follows3

•
4

: 

P(t) =Cl(X~)2+C2(X~)2+2~ClC2-1/W2x~x~, 
(12) 
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where Wis the Wronskian, and CI and C2 are arbitrary con­
stants. Thus, ifwe take the inverse square of the above auxil­
iary function as q2 (t), the solution for Eq. (1) can be always 
written in the form of 

X 12 (t) = ~p(t)exp[ ± ;~A + If~]. , PU) 
(13) 

For an analytical expression for solution (13), it is essential 
that the independent solutions of (10), that is, X?,2' are in 
analytical form. 

In addition, the above results suggest that there is a class 
of solvable differential equations uniquely determined from 
an initial equation of the form 

oX + /o(t)x = O. (14) 

We have an infinite sequence of such equations 

oX + [/O(t) + f A~]x = 0 (N = 1,2,3, ... ,00) 
1=IPi 

(15) 

associated with 

(16) 

and their solutions can be described in the form of recursion 
equations 

xf2U) =~PNu)exp[ ±;~AN + If~], (17) 
, PN(t) 

PN(t) =PN-I [CI exp(2i~AN_I + 1 f P:~ J 

(18) 

Here, note that the independent solutions for the initial 
equation ( 14) are referred to as the initial solutions through­
out the paper. 

III. EXAMPLES 

As examples, let us consider the case of/o(t) = atv. 

A. Case 1:" = 0 and a = 0 

From the initial equation oX = 0, we readily have the 
auxiliaryfunctionPI(t) = at 2 + bt + cwitha = (4 + b 2)/ 

4c. This leads to the first part of the infinite sequence, 

x + [A /(at 2 + bt + C)2]X = 0, (19) 

and its independent solution is described by 

XI2(t)=~at2+bt+cexp(±;~A+lf 2 dt ). 
, at +bt+c 

(20) 

Since the integral ofEq. (20) reduces to 

2 tan-I ( 2at + b ) or tan-I(at + .!!...), 
~4ac-b2 ~4ac-b2 2 

1748 J. Math. Phys., Vol. 27, No.7, July 1986 

we obtain 

X I,2 (t) = ~at2 + bt + c 

xexp[ ±;~A + ltan- l (at+b/2)]. (21) 

Equations (21) is in agreement with the result given in the 
textbookS by Magnus and Winkler. 

B. Case 2:" = 0 and a#O 

The initial equation is oX + ax = O. This has the auxil­
iary function described by 

PI (t) = ~C2 + 1/a + C cos (2..Jat + t/Jo), (22) 

where C and t/Jo are arbitrary constants. From (22), we have 
the first part of the infinite sequence, 

oX + [a + A /(~C2 + 1/a + C cos (2..Jat + t/JO»2]X = 0, 
(23) 

and its independent solution is given by 

X I•2 (t) = [~C2 + 1/a + C cos(2..Jat + t/Jo)] 1/2 

xexp[ ± i~A + 1 

X f ~C2 + 1/a + :~(2..Jat + t/Jo) l (24) 

Since the integral also reduces to 

f dt 

~C2 + 1/a + C cos (2..Jat + t/Jo) 

1 . -I( ~1/asin(2..Jat + t/Jo) ) 
=-Sln , 

2 ~C2 + 1/a + C cos(2..Jat + t/Jo) 
Eq. (24) becomes 

X\,2 (t) = [~C2 + 1/a + C cos (2..Jat + t/Jo) ] 112 

xexp[ ± i~ 

. -I( ~1/asin(2..Jat + t/Jo) )] 
x~ . 

~C2 + 1/a + C cos(2..Jat + t/Jo) 

For the case of a < 0, the auxiliary function is 

PI (t) = ~C2 - 1/a + C cosh(2~ - at + t/Jo). 

(25) 

Therefore, the independent solution is written as follows: 

X\,2 (t) 

= [~C'Z - 1/a + C cosh(2~ - at + t/Jo)] 1/2 

X exp ± i~A + 1 tan -\ [ (~ - aC - ~ - aC 2 - 1) 

xtanh(~ - at + t/JoI2]}, (26) 

where the integral formula 

f dt 

~C2 - 1/a + C cosh (2F(it + t/Jo) 

= tan-I [ (~ -aC- ~ -aC'Z - 1) 

X tanh ( ~ - at + t/JoI2)] 

is used. 
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C. Case 3: v = 1 and a,cO 

The initial equation is x + atx = O. This auxiliary func­
tion3

•
4 is described by 

IV. DISCUSSION 

As seen in Sees. II and III, a sequence of equations is 
uniquely determined from the initial equation. In addition to 
the equations mentioned in See. III, we can take into account 
other equations as possible candidates to replace the initial 
equation; that is, many of the equations that reduce to Bessel 
equations, the Mathieu. equation, the Whittaker equation, 
and the Weber equation, because their solutions are in analy­
tical forms. 

It is notable that equations built by the present teeh­
nique have apparent stability characteristics. They depend 
on both an initial solution (bounded or unbounded) and the 
value orA. (A. < - I or A. > - 1): (1) for the case of a bound­
ed initial solution, A. > - 1 solutions for equations built from 
this initial equation are always bounded; (2) for the cases of 
a bounded initial solution, A. < - 1 or an unbounded initial 
solution, A. > - 1 solutions diverge oscillating; and (3) for 
the case of an unbounded initial solution, A. < - 1, solutions 
monotonously diverge. 

In accelerator physics, there exist typical applications of 
the mathematical results for the present examples; they are 
the linearized Kapcbinsldj-Vladimirsldj (KV) envelope 
equations6 in a magnetic focusing channel and a periodic 

1749 J. Math. Phys .• Vol. 27. No.7. July 1986 

+ 2~ ab -~ N~( ¥at3/2y~( ¥at 3/2) ], 
(27) 

where Nand J are Bessel and Neumann functions, f.L is!, and 
a, b are arbitrary constants. Using (27), we have the first 
part of the infinite sequence of the form 

(28) 

(29) 

beam-beam focusing system. Since the details of a discussion 
on those applications are beyond our current scope, they will 
be presented elsewhere.7

•
s 
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Wave equations with the characteristic propagation property 
R. J. Torrence 
Department of Mathematics and Statistics. University of Calgary. Calgary. Canada T2N 1 N4 

(Received 10 April 1985; accepted for publication 6 March 1986) 

Within the class of second-order linear self-adjoint wave equations in 1 + 1 dimensions, an 
explicit construction is given of probably all those with the characteristic propagation property, 
that is, those whose solutions are without tails. 

I. INTRODUCTION 

It is the purpose of this paper to explicitly construct a 
family of self-adjoint second-order hyperbolic partial differ­
ential equations in one space dimension with simple math­
ematical properties. It is likely that all such equations are 
obtained. The special equations that are sought have solu­
tions with what Kundt and Newmanl have called the char­
acteristic propagation property (CPP). Familiar equations 
that have this property are the ordinary wave equation in one 
dimension, 

auv 'l1 = 0; 

the radial wave equations that result from separating the 
Minkowski space 0' Alembertian in spherical coordinates 

[ 
1 1(1 + 1) ] auv +--(au +av ) - 2 <1>1 =0, 

u+v (u+v) 

1 a positive integer; 

and wave equations in one dimension involving the "reftec­
tionless" Bargmann potentials, 

[ 
1 1(1 + 1) ] 

auv +--(au +av ) - 2 XI =0, 
u+v cosh (u+v) 

1 a positive integer. 

The mathematical simplicity of these equations is reftected 
in their closed form general solutions. For example, 

'11 = a(u) + b(v) 

for the first one, and 

<1>0 = a(u) + b(v), 
(u + v) 

<1>1 = a(u) + b(v) _ 2a(u) + 2b(v), 
u + v (u + v)Z 

etc. 

for the second set. It will be convenient to speak of such 
solutions as CP solutions, and of the corresponding wave 
equations as having the CPP and of being CP equations. 

The definition of the CPP is reviewed in Sec. II. In addi­
tion we there review the substitution sequence (SS) generat­
ed by the coefficients of anyone-dimensional linear wave 
equation, self-adjoint or not. The SS was introduced in Ref. 1 
because its termination is obviously sufficient, and probably 
necessary, for the original equation to be a CP equation. The 
condition that the SS first yields a vanishing term, i.e., ter­
minates, after N steps is a nonlinear partial differential equa­
tion of order 2N. Although a variety of particular solutions 
of this nonlinear condition are known,l-4 there has been no 
suggestion as to the form its general solution might take. 

In Sec. III we introduce a set of N new dependent varia­
bles in terms of which the termination condition takes the 
form of a system of N coupled second-order nonlinear evolu­
tion equations. The system is complicated; however, for the 
case N = 1, it is the well-known Liouville equationS 
(fuv = eU

• As the general solution of this equation is known, 
and relatively simple, one is encouraged regarding the gen­
eral case. Similar systems of nonlinear evolution equations 
have in fact been studied, and solved, by Leznov6 and Lez­
nov and Saveliev.7 Beginning with one of their systems of2N 
equations and its general solution, we obtain the general so­
lution of our system of N equations for the case where the 
original wave equation was self-adjoint. If the termination of 
the SS is, as seems likely, necessary for the CPP, as well as 
sufficient for it, then all self-adjoint CP equations of second 
order in the one-dimensional setting have been obtained. In 
any case, the number and variety of such equations that can 
be explicitly written down has been greatly enlarged. 

II. REVIEW OF CHARACTERISTIC PROPAGATION AND 
SUBSTITUTION SEQUENCES 

Consider the equation 
Z 2 

L g"b(XC)<I>;ab + L h a(XC)<I>;a + i(xC)<I> = 0, (1) 
a,b=\ a=\ 

where g"b has signature 0. A combination of a coordinate 
transformation on Xl ,xz, a conformal transformation on g"b, 

and a factor transformation on <I> can always be found, \ 
which will transform (1) to either of two forms: 

{avk(u,v)au - j(u,v)}'I1(u,v) = 0, 

{auk(u,v)av - }(u,v)}'ii(u,v) = 0, 

(2a) 

(2b) 

In this paper we are concerned only with examples of ( 1 ) 
that are self-adjoint, which means that k ( u,v) and k (u,v) are 
constant, so (2a) and (2b) coincide, and we can thus begin 
our discussion with 

(3) 

the subscripts onjl and '11 1 anticipate future developments. 
In order to define what it means for (3). to be a CP 

equation, we consider its characteristic initial data problem. 
Suppose uo, Vo label two intersecting characteristics and 
'11\ (uo,v) =a(v), 'I1 1(u,VO) =b(u). Suppose that if 
a(v)#D=>v\<v<vz and b(u)#D=>u1<u<uz, then '11 1 (u,v) 
#D=>u\<u<uz or v1<v<vz; in this case we say that (3) is a 
CP equation and its solutions are CP waves. In simple terms, 
it means that characteristic initial data whose support is ini­
tially between two characteristics generates a field whose 
support remains between them. 
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An ingenious approach to finding CP equations was 
presented in Ref. 1. If we define j2 and qt 2 by 
j2 = jl [jl - au. InUd], qt I = a.UI qt2) it is a simple matter 
to confirm that (3) is equivalent to (avjl au - j2)qt2 = O. 
More generally if we inductively define j", 'II ", n = 2,3, ... ,N, 
by 

j,,+1 =~-au.lnlj"l, j"'II,, =av U,,'1111+t>, 
j" j,,-I 

(4) 

then (3) is in fact equivalent to anyone of 

(avj" a" -j,,+I)qt"+1 =0, n= 1,2, ... ,N, (5) 

where we assume that none ofjl, ... ,jN vanish. IfjN+ I =0, we 
cannot continue generating the sequence ofj,,'s and of equi­
valent equations, and we say that the substitution sequence 
jl,j2,j3"" terminates after N steps. In such a case it follows 
that avjNau(qtN+I) =0, which is solved by 'liN + I 
= a(v), where a(v) is an arbitrary function of v. We can 
now work our way back to 'II I via (5), and obtain 

1 a jl a j2 a jN-I a [. ()] '11 1(u,v) =-;- v -;- v -;- .•. v -.- v iNa v , 
it 12 13 iN 

(6a) 

a solution of (3) depending on an arbitrary function. Start­
ing again with (3) but with auv in place of avu we find that 

1 a jt a j2 a jN-I a [. b( )] (6b) '11 1(u,v) =-;- u -;- u -;- ..• u -.- u iN U 

it 12 13 iN 
is also a solution of (3), depending on an arbitrary function 
of u. The sum of ( 6a) and (6b) is the general solution of ( 3 ) . 
What is more, it is obvious from the form of the general 
solution that (3) is a CP equation. 

Thus every equation that generates a terminating SS is a 
CP equation. If the sequence does not terminate we know of 
no proof that the equation is not a CP equation, but Kundt 
and Newman plausibly conjecture this to be so. If so, then to 
find alljl (u,v)'s that generatejN + I (u,v) = 0 for some N is 
to find all self-adjoint CP equations. 

Unfortunately, if we concatenate the equations defining 
jl>j2, ... ,jN + I and setjN + I = 0, we obtain a nonlinear differ­
ential equation that is of order 2N and exceedingly compli­
cated. It is this equation which we will rewrite and solve in 
the next section. 

III. SOLVING THE TERMINATION CONDITION 

eU
, = 2{U'(u) V'(v)/[ U(u) + V(v) ]2}, (9) 

where U and Vare two arbitrary differentiable functions. To 
the best of our knowledge it has not been noted earlier that 
this equation, which occurs in a variety of mathematical and 
physical contexts, has the significance given to it by (8) as 
well. It is not difficult to generalize (8) and obtain 

[
0'1] leu,] 

jN+I =~uv ;N =KN )N ' ( 10) 

where the N X N matrix K N is given by 

1 -1 0 

-1 2 -1 0 

0 -1 2 -1 0 

KN= . . . 
0 -1 2 -1 0 

0 -1 2 -1 
0 -1 2 

( ) 

On the one hand it is gratifying that the condition for termi­
nation after N steps can be written in such a relatively simple 
form; in particular the matrix K N is symmetric and tridia­
gonal. On the other hand, even with the knowledge of a var­
iety of particular solutions of ( 10), the generalization of (9 ) 
to the general solution of (10) is elusive. 

From considerations quite independent of any men­
tioned above, Leznov6 and Leznov and Saveliev7 have been 
led to consider the sytem ( 10) with K N replaced by matrices 
of anyone of four distinct types, none of them identical to 
( 11 ) . We shall begin with one of their types, write down its 
general solution, and by a simple argument obtain from it the 
general solution of (10). 

Consider the system 

[

1'1] [e(AJ,(T),] 
a uv : = : , 

1'M e(AJ,(T)M 
(12) 

where the M XM matrix AM is given by 

2 -1 0 
-1 2 -1 0 

o -1 2-1 o 
Given a substitution sequencejl,j2, ... ,j N such thatjN + I AM = 

is the first term that vanishes, let us introduce a new se-
quence of functions U I ,U2,""UN , wherejl = eU

' while 

i" = j" _ leu., n = 2, ... ,N. (7) 

As we are considering only real-valued functions of real co­
ordinates, this would appear to preclude sequences contain­
ing i,,'s that are negative, however, none of our analysis 
would be affected by complex constants added to the 0'" 's, so 
no such restriction is operating. It is a trivial matter to con­
firm that, given (7), 

i2 = <X::>auvul = eU
'. (8) 

Thus termination after one step is equivalent to the classical 
Liouville equation whose general solution is known, and is 
usually written in the form 
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o -1 2 -1 0 
o -1 2-1 

o -1 2 
(13) 

Note that not only do (10) and (12) differ in form (it is in 
fact a superficial difference), but that ( 11 ) and ( 13) differ in 
one entry (this turns out to be a more significant matter). 

For the ingenious argument by which Leznov and Save­
liev find the general solution of ( 12) and (13) the reader is 
referred to their papers.6

•
7 1t is sufficient for our purposes to 

simply restate the result. Consider first the case M = 1, that 
is, the equation 

(14) 
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It is easy to confirm that (14) is solved by 

eT, = [/'(u)g'(v) j1/2/[f(U) + g(v)], (15) 

where j and g are arbitrary differentiable functions [( 14 ) 
and (15) are, of course, simply related to (8) and (9)]. Now 
let us introduce a new dependent variable Xl (u,v) in place of 
1'l' and two new functions q;l and 'I1 l in place ofjandg, by 

Xl =e- T" 'I1 l (u) =/,(u), 'I1 l (v) = - [lIg(v)],. 
(16) 

In terms of these new functions (15) becomes 

(17) 

Although ( 17) is not intrinsically simpler than ( 15), it turns 
out that it generalizes more easily to the solution of (12) for 
N> 1. Following Refs. 6 and 7 we introduce the operator 11m 
by 

where 

X X" 
X m- I -U·"U 

XV XV" 
Xm-I 

AmX(u,v) = -U···uv . . . 
X m- I Xm-I Xm-Im-I - - ~ c:::;; V···V Vo"vu 

(18) 

It can be confirmed, with patience, that for M = 2, (12) is 
solved by 

e- T, =X2, e-1", = - A2X 2, 

where 

X2 (u,v) 

(19) 

= 
[S"q; lStp2] [Sv'l1 lS'I12] - [f"q;.] [J"'I1.] + I 

[q; t (U)tp2(U)'I1t (v)'I12(v)] l/3 
(20) 

It is shown in Refs. 6 and 7 that, for arbitrary M, (12) is 
solved by 

e-1"m= (-1)m(m-1l/2AmX M (u,v), m = 1,2, ... ,M, 
(21) 

_ [S"q;l'''Sq;M] [Sv'l1 I'''S'I1M ] - ... + (-l)M-I[S"q;.] [Sv'l1.] + (-1)M e 1", = X
M 

= -=-___ --=--"-___ --=-______ -"-_-"--=--_-"-___ _ 

[q;t'(u)q;r-I(u) ... q;M(U)'I1t'(v)'I1r- l (v) ... '11M (v) ] I/(M+ I) 

It remains to use (21) and (22) to obtain the solution of 
( 10). The crucial step rests, again, on a result in Ref. 6. 
There it is shown that 

tpl = q;M' 

q;2 = q;M-I, (23) 

If we take (13) with M = 2Q, and assume the hypothesis of 
(23 ), the conclusion of (23) shows us that the set of the first 
Q equations of ( 12) is identical to the set of the last Q, and 
this set is a new set. As a result we see that 

[

1'l] [e(EQ1")'] 
a"v : = : , 

1'Q e(EQT)Q 

where the Q X Q matrix EQ is 

2 -I 0 
-I 2-1 

o -I 2 

o 

is solved by 

o 
-I 

-I 
o 

(24) 

0 

2 -I 0 

-I 2 -I 
0 -I 1 

(25) 

e-1"q= (-l)q(q-I) /2AqX Q(u,v), q= I, ... ,Q, (26) 
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(22) 

where 

-1" l:J~o( -1)iJi(u)Ji(v) 
e '= XQ = , (27) 

tpl(U)'" q;Q(u)'I1 l (v) ... 'I1Q(v) 

with the iterated integral [j given in terms of} arbitrary func­
tions by [0 = I and 

j 

------------'~,------------[i(U) = f"q;lStp2'''StpQ-ISq;QSq;QStpQ-I'''Sq;2Stpl 

Ji(v) = S"'I1 lS'I12'''S'I1 Q_ d'l1 QS'I1 QS'I1 Q_ I "·S'I12S'I1 l 

-------------~--~---------j 

} = 1,2, ... ,2Q. (28) 

In (28) the bracket labeled} indicates that [j is the first} 
iterated integrals of the full expression; the remaining 2Q - } 
integrals are not present. The next step in our progression 
from (12) and (13) to (10) and (11) is to set Q = Nand to 
define a new set of dependent variables uj , ... ,u~ by 

(29) 

The system (24) now becomes 

(30) 

R. J. Torrence 1752 



                                                                                                                                    

1 -1 0 

-1 2 -1 0 

0 -1 2 -1 0 

KN= . . . 
0 -1 2 -1 0 

0 -1 2 -1 
0 -1 2 

(31) 

The last step is to shift the matrix K N to its desired position, 
and this is obviously accomplished by defining 

0') = O'j - 0'2, 
0'2 = - CTj + lui - 0'3' 

q=KNll', i.e., 

O'N_t = -crN_2 +luN -O'N' 

O'N = -uN- t + 2oN. 
(32) 

The linear combinations on the right-hand side of (32) be­
come products of integer powers when the exponentials of 
the O"s and O'''s are considered, and it is easy to confirm that, 
given ]leu), ]lev) as in (28), the result is 

jt = ( - l)N-'aN_tXNlaNXN' 

j2 = ( -l)N-laN_lXNlaN_IXN' 

jn = (-l)N-naN_n(Xn)/aN_n+J (XN), 

jN-t = -XNla~N' 
jN = + l/XN, 

jN+J =0, 

where 
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(33) 

(34) 

Since there are 2N arbitrary functions in X N andj N + t is the 
first vanishingjn' (33), and (34) give the general substitu­
tion sequence that terminates after N steps, within the class 
of wave equations that we are considering. 

IV. CONCLUSION 

With any reasonable definition of "closed form" the 
wave equations given as examples of CP equations in the 
Introduction can be said to have general solutions express­
ible in closed form. From the formulas (6a), and (6b) it is 
clear that the family of CP equations has this property and 
may be regarded as a natural generalization of auu '" = 0 in 
this sense. This, combined with the fact that these equations 
can be themselves written down, by means of (33) and (34), 
in terms of coefficients with an explicit representation, is 
why we earlier referred to the CP equations as being math­
ematically simple. 
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Through a canonoid transformation the integration for the Hamilton-Jacobi equations is 
transformed into a two step procedure: the first being a linear problem and the second a 
quasilinear one. Examples are given. 

I. INTRODUCTION 

Given the Lagrangian 

L(q.q.t) = L a/j (q.t)qi qj - V(q.t) (i.j = 1 •...• N) • 

we have the Hamiltonian 

H(q.p.t) = L b/j (q.t) Pi Pj + V(q.t) (1) 

(where ~b/j aik = 6jk ). 
The corresponding Hamilton-Jacobi equation is 

f==~ b·· oS oS + V+ oS =0. (2) 
~ !I Oqi Oqj ot 

Solutions of the Hamilton-Jacobi equations have exten­
sive use: as a fundamental concept in classical mechanics. 1 as 
a practical tool for solving differential equations,2 as a basis 
for quantum mechanics,3 as a zeroth-order approximation in 
the WKB method,4 etc. 

Unfortunately, Eq. (2) is a nonlinear partial differential 
equation-and to solve it is. in general. an almost insur­
mountable task. This note presents a way of overcoming the 
problem: a technique for linearizing this equation. Through 
a canonoid transformation. Eq. (2) is transformed into a 
linear one and the determination of the adequate canonoid 
transformation is achieved by solving a quasilinear system. 

As an additional advantage, our method leads to the 
general solution of the Hamilton-Jacobi equation-certain­
Iy more important than the usual complete solution. S 

II. THE LINEARIZATION METHOD 

The Hamiltonian-Eq. (1 )-is transformed into 

H= LAi Pi - La!JAi Aj + V. (3) 

by any member of the family of transformations 

Qi =qi' 

(4) 

It is easy to prove that canonical equations for H will 
describe the same mechanical system provided that the func­
tions Ai obey the set of quasilinear partial differential equa­
tions 

(5) 

(The above equations are derived from the Euler-Lagrange 
equations in which we use qi = AI') 

Then the Hamilton-Jacobi equation corresponding to 
His 

(6) 

Since [f,g] = O. it maybe assured6 that Eq. (2) andEq. 
(6) will present a common solution-and its determination 
is much easier if we seek for solutions of Eq. (6), due to its 
linear character. 

III. EXAMPLES 

Suppose we have a system described by the Lagrangian 

L = aqf + afz - 2q1 - 2q2 • 

then the corresponding Hamiltonian is 

H = (pf + p~ )/4a + 2q1 + 2q2 . 

Its Hamilton-Jacobi equation is given by 

_1 (OS)2 + _1 (OS)2 + 2q1 + 2q2 + oS = O. 
4a Oq1 4a Oq2 ot 

The transformation 

Qi=qi' 

L 
~P; L2 A· p. =-+a A. (i= 1,2), 

I I 4a I 

will be canonoid whenever 

OAi OAi 
aA 1-+aA2-= -1, (i= 1,2). 

oql Oq2 

(7) 

(8) 

This system of equations have the solutions given by 

aA;+2qi =Fj (A 1 -A2) (i= 1,2). (9) 

The new Hamiltonian-Jacobi equation becomes 

L AI oW - aA f - aA ~ + 2q1 + 2q2 = r (10) 
oql 

[where the separation ofvariablesS(q,t) = W(q) - rtwas 
performed, and r is the separation constant]. 

Now, we must perform the integration of the auxiliary 
system: 

dq1 dq2 dW -=-=----------
A I A2 r + aA f + aA ~ - 2q1 - 2q2 

1754 J. Math. Phys. 27 (7). July 1986 0022-2488/86/071754-02$02.50 @ 1986 American Institute of Physics 1754 



                                                                                                                                    

This has the general solution 

W= -aA2 ('V+aA U3 - lft - lf2 +aA ~ - 2aA t A2] 

+ G( Al -A2) , (11) 

where Aland A2 aregivenbyEq. (9),andGisanarbitrary 
function of the variable (AI -A2 ). 

For sake of comparison, let us consider the Hamilton­
Jacobi equation, corresponding to the original Hamilto­
nian-Eq. (7)-

_I (a~2 +_1 (a~2 +lft+lf2=r, 
4a aq; ) 4a aq---;) 

where S = W(q) - yr. 
ByEq. (4), whereP; is considered as as laQ; = as laq; 

and p; = as laq;, we can conclude that 

r=r· 
This Hamilton-Jacobi equation bas a solution obtained 

via separation of variables given by 

W= -j~a(r-lfl-C)j - j~a(C-lf2)j+C', 

where C is the separation constant and C' is a constant. 
This solution also must be a solution of the linear Hamil­

ton-Jacobi equation-Eq. (IO)-i.e., 

2AI ~a(r - lfl - C) + 2A2 ~a(C - lf2) 

= r - lft - lf2 + aA ~ + aA ~ , 
which implies in the choice 

AI=~(r-lfl-C)la and A2=~(C-lf2)/a, 
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or by Eq. (9) in 

FI = r - C and F2 = C. 

It is easy to prove that W. given by Eq. (II), reduces to 
W with the above values for A I and A2 and the arbitrary 
function G = ja2( A2 - AI)3 + C'. 

As another example consider the Lagrangian 

L = qlq2 - qlq2 , 

and the corresponding linear Hamilton-Jacobi equation 

aw aw _ 
AI - + A2 - - AI A2 + qlq2 = r aql aq2 

(where S = W - "ft). 
Then its general solution is 

-W . ql ql [ A ~ A2 + f. A2] = r arcsin + .;;;.;;.:'--~.:..-....:...:..-.;;~ 
JA~ +~ q~ +A~ 

+ G( AI A2 + qlq2) , 

with the relations 

A~+q:=F;(AIA2+qlq2) (i= 1,2). 

IV. Arnold, Methodes Mathematiques de la M'ecanique Classique (Mir, 
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This paper is a continuation of previous papers I and II with similar titles [1. Math. Phys. 26. 
3080. 3100 (1985) ]. In those papers a theory was developed that described the characteristic 
functional structures of infinitesimal symmetry mappings of systems of first- or second-order 
dynamical equations. Now an investigation is made of how cyclic variables of the dynamical 
equations a1fect the symmetry equations and thereby propagate through the theory to influence 
the form of the characteristic functional structure of the symmetries. These special symmetries. 
which have a particularly simple form. are characterized by infinitesimal point mappings in which 
only cyclic coordinates are varied. with the variation essentially determined by constants of 
motion of the dynamical system. For Lagrangian systems with cyclic coordinates these special 
symmetry mappings include the well-known Noether symmetries characterized by constant 
variation of the cyclic coordinates. 

I. INTRODUCTION 

In the preceding papers of this seriesl
•
2 several theorems 

were developed that described the characteristic functional 
structures of infinitesimal symmetry mappings of systems of 
first- or second-order ordinary differential equations. A 
principal feature of the characteristic structures of such 
mappings is determined by the fundamental solution func­
tions of auxiliary systems of ordinary linear differential 
equations. These linear equations are obtained by a proce­
dure that uses certain basic properties of both the original 
(dynamical) differential equations and their associated sys­
tem of partial differential symmetry equations. 

II. SPECIAL SYMMETRY MAPPINGS OF SYSTEMS OF 
SECOND-ORDER DYNAMICAL EQUATIONS WITH 
CYCLIC VARIABLES 

We now investigate how cyclic (missing) variables in 
the dynamical equations a1fect the form of the above-men­
tioned associated system of ordinary linear equations and 
thence the form of their fundamental solution functions and 
ultimately the functional structure of the symmetry map­
pings. It will be shown that these resulting special symme­
tries have a particularly simple form characterized by infini­
tesimal point mappings in which only cyclic coordinates are 
varied. with their variations essentially determined by con­
stants of motion of the dynamical system. For Lagrangian 
systems with cyclic coordinates these special symmetry 
mappings are more general than the well-known classical 
Noether symmetries characterized by constant variations of 
the cyclic coordinates. 

By use of the theory of characteristic functional struc­
ture. symmetry mappings are obtained for the following sit­
uations: (1) second-order dynamical equations with cyclic 
coordinate or pairs of cyclic variables. (2) first-order dyna­
mical systems with cyclic coordinates. including a special 
application for autonomous systems. and (3) first-order sys­
tems obtained from the reduction of second-order systems 
with pairs of cyclic variables. 

As a prerequisite to examining how cyclic variables of a 
second-order dynamical system lead to special symmetry 
mappings we summarize elements of characteristic func­
tional structure theory essential to this analysis. For a de­
tailed discussion see Ref. l. 

Consider then a system of second-order dynamical 
equations of the form3 

je =FI(xl .... ,xn;Xi .... ,xn;t)==.FI(x,x.t). 

i= 1 ..... n. 
with solutions 

Xl = ¢i(cl 
..... C

2n.t)==¢/(c.t). 

cA = const. A = 1 ..... 2n. 

so that upon differentiation 

'1 a¢i 
X=-. at 

(2.1 ) 

(2.2) 

(2.3) 

Inversion of (2.2) and (2.3) gives 2n functionally indepen­
dent constants of motion4 

A • I -A 
C (x,x.t) =~. (2.4) 

An infinitesimal velocity-dependent mapping of the 
form 

Xl = Xi + 8XI. 8Xl S l(x,x.t)8a. 

t = t + &. & -s o(x,x.t)8a. 

(2.5) 

(2.6) 

which maps the set of all solution curves of (2.1) into itself. 
is defined to be a velocity-dependent symmetry mapping of 
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the dynamical system (2.1). Such symmetry mappings are 
expressible in the form 

Xi=XI+ [ZI(X,x,t) +xISo(x,x,t)]c5a, (2.7) 

t = t + SO(x,x,t)c5a, SO arbitrary, (2.8) 

where ZI(X,x,t) is a solution of the system of partial ditfer­
ential equations obtained by the formal expansion of the 
equationss,6 

Zi +J~(x,x,t)Z j + K~(x,x,t)Z} ~ 0, 

where [refer to (2.1)] 

Ji ( . t)= _ aF1(x,x,t) 
j x,x, - ax} 

K
i ( . )_ aFi(x,x,t) 
j x,x,t = - .' 

ax' 

(2.9) 

(2.10) 

(2.11 ) 

Every solution Z i (x,x,t) of the partial ditferential equa­
tions obtained from the expansion of (2.9) is expressible in a 
form with characteristic functional structures 

ZI(X,x,t) = BA(x,x,t)tA [e l(x,x,t), ... ,e"(x,x,t),t], 

0<u<2n, A = 1, ... ,2n, (2.12) 

where the functions B A (x,x,t) are arbitrary constants of mo­
tion of the dynamical system (2.1) and the functions 
eA(x,x,t) are the specific constants of motion (2.4). The 
functions tA (e,t), which appear in (2.12), are obtained by 
replacing the constants c-4, which appear in functions 
~ (c,t), with the respective constants of motion e A by 
means of (2.4); the functions ~ (c,t) are the fundamental 
solution functions, which occur in the solutions 

zt(c,t) = bAtA (c,t), b A = const, (2.13) 

of an associated system of linear equations 

zt + fa (c,t)Z" + k ia (c,t)%" ~ 0, 

obtained from (2.9) and (2.10), where4 

. t I 
k 'a (c,t) = K a (x,x,t). 

(2.14 ) 

(2.15) 

(2.16) 

(2.17) 

It follows that each fundamental solution function ~ (c,t) 
will satisfy 

It + fa (c,t)~ + k ia (c,t)~ ,;" O. (2.18) 

We now use characteristic functional structure theory 
(outlined above) to show that dynamical systems (2.1) with 
cyclic coordinates or pairs of cyclic variables admit certain 
symmetry mappings with special forms. 

The dynamical system (2.1) is said to be cyclic in a 
coordinate x' if 

aF1(x,x,t) = o. 
ax' 

(2.19) 

It is to be noted that for a coordinate x' to be cyclic it must be 
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missing from everyfunctionF1(x,x,t), i = 1, ... ,n. Similarly a 
dynamical system (2.1) is said to be cyclic in the pair of 
variables (x', X') if 

aF1(x,x,t) = 0, aF1(x,x.t) = 0, i = 1 ..... n. (2.20) 
ax' ax' 

It is now apparent how missing variables in the func­
tions Fi(x,x.t) of the dynamical equations (2.1) affect the 
functional structure of J ~ and K ~ [see (2.10) and (2.11) ] 
in the symmetry condition (2.9). and thence [see (2.16) and 
(2.17) ] the structure of the associated system oflinear equa­
tions (2.14) [and (2.18)]. 

Consider first the case of the special symmetry solution 
of (2.9), which is a consequence of a pair of cyclic variables 
(x'. X') in the dynamical system (2.1). In this case we ob­
serve that the following tA will be the solution of (2.18): 

~ = Il~ t + vA> Il~, ~ = arbitrary constants, 

Il~ = 0, ~ = o. i#=s. (2.21) 

For the case in which the dynamical system (2.1) is 
cyclic in a coordinate x' [but (x'. x') not a cyclic pair] the 
following ~ will satisfy (2.18): 

~ = ~. ~ = arbitrary constants, 

VA = O. i#=r. (2.22) 

For both cases considered above the fundamental solu­
tion functions ~ [(2.21) and (2.22)] are independent of 
the constants c-4 that appear in (2.2) and (2.4). Hence for 
these two cases of dynamical equations with cyclic variables 
the above-described ~ may be used without modification in 
(2.12) to obtain symmetry functions ZI(X ,x,t). This leads 
to the following theorem. 

Theorem 2.1: A dynamical system 

x = Fi(x,x,t), i = 1 ..... n, (2.1') 

will admit an infinitesimal velocity-dependent symmetry 
mapping 

Xi = Xi + [Zi(X,x,t) + XISO(x,x,t) ]c5a. 

t = t + so(x,x.t)c5a. SO arbitrary. 

(2.7') 

(2.8') 

of a special form if the dynamical system is cyclic in (a) a 
pair of variables (x'. X'). in that aFI/a~ = 0 and 
aFI/aX' = 0, i = 1, ... ,n, in which case the Zi in (2.7') will 
have the special form 

(2.23) 

Zi = 0, i#=s; (2.24) 

and (b) a coordinate x', in that aFi/ax' = 0, i = 1, ... ,n 
[(x', x') not a cyclic pair], in which case theZlin (2.7') will 
have the special form 

Z' = N(r) (x,x,t), 

Zi = 0, i#=r. 

(2.25) 

(2.26) 

whereM (S), N (s) • and N (,) are arbitrary constants of motion 
of (2.1): • 

Remark 2.1: We have used characteristic functional 
structure theory to examine how missing variables in the dyn­
amical equations affect various elements of the theory and 
thereby determine symmetry mappings with a special form. 
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If one were not interested in the details of how cyclic varia­
bles affect the characteristic functional structure of the sym­
metry mappings the simplicity of this particular problem 
clearly allows one to deduce the form of these special sym­
metries directly from the symmetry equation (2.9) by taking 
into account the effect of the missing variables on the func­
tions JJ (2.10) and KJ (2.11). • 

Remark 2.2: IfinTheorem 2.1 wechooseS'°(x,x,t) = 0, 
and choose the constants of motion M ($), N ($), and N (r) to be 
arbitrary constants, then the mappings described in 
Theorem 2.1 reduce to classical velocity-independent map­
pings. For the case in which Theorem 2.1 (b) is applicable to 
a Lagrangian system the above choices for S' 0 and N (r) lead 
to the well-known Noether mappings associated with cyclic 
coordinates. • 

Remark 2.3: If a dynamical system (2.1) is cyclic in all 
x's, then the functionsla (c,t) = 0 [see (2.10) and (2.16)] 
and the associated system oflinear equations (2.14) reduces 
to that of a time-dependent harmonic oscillator. • 

III. SPECIAL SYMMETRY MAPPINGS OF SYSTEMS OF 
FIRST-ORDER DYNAMICAL EQUATIONS WITH CYCLIC 
COORDINATES 

For dynamical systems of first order we state Theorem 
3.1 without proof, since the proof is similar to that of 
Theorem 2.1 (b). 

Theorem 3.1: A dynamical system 

jI=/F(yi, ... "iY), 1= 1, ... ,N, (3.1) 
will admit an infinitesimal velocity-independent symmetry 
mapping 

Y =1 + [Ul(y,t) +1j,1(y,t)1]°(y,t)]~a, (3.2) 

t = t + 1]°(y,t)~a, 1]°(y,t) arbitrary, (3.3) 

iff U I satisfies the symmetry condition5
•
7 

i.JI- a).I UJ~O (3.4) ay . 
Corresponding to each cyclic coordinate yR of ( 3.1) (in that 
a). 1/ ayR = 0) the system (3.1) will admit a transformation 
(3.2) and (3.3) in which 

uR = N(R)(Y,t), 

U l = 0, I =l=R, 

(3.5) 

(3.6) 

where N (R) is an arbitrary constant of motion. • 
First-order dynamical systems expressible in the form 

jI-). l(y) = 0, 1= 1, ... ,N, (3.7) 

are said to be autonomous since the functions). I are inde­
pendent of t. 

It is known 8-10 there exist coordinate transformations 

(3.8) 

such that in they· coordinates the contravariant vector com­
ponents A .1 (y.) reduce to the form 

(3.9) 

In this y. ("straightened-out") system, the dynamical equa­
tions (3.7) reduce to 
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y.I _~~ =0, (3.10) 

which are cyclic in all of the coordinates y.I. Hence in this 
coordinate system Theorem 3.1 is applicable. We may there­
fore state the following corollary. 

Corollary 3.1.1: There exists a system of coordinates y.I, 
1= 1, ... ,N, in which an autonomous dynamical system 

r -). A(y) = 0 (3.7') 

takes the form 

y.A _ ~t = O. (3.10') 

In the y. coordinates the dynamical equations admit a sym­
metry mapping 

y.I = y.I + [N.(/)(y.,t) + ~~1].0(y.,t) ]~a, (3.11) 

t=t+1]·°(y·,t)~a, 1].0 arbitrary, (3.12) 

where the functions N·(/) (y·,t), 1= 1, ... ,N, are arbitrary 
constants of motion of (3.10'). • 

IV. CYCLIC VARIABLE SYMMETRY RELATIONS IN 
FIRST-ORDER SYSTEMS OBTAINED FROM SECOND­
ORDER SYSTEMS 

By a well-known procedure a system of n second-order 
ordinary differential equations may be reduced to an asso­
ciated system of N = 2n first-order differential equations by 
defining N = 2n coordinates I by the relations 

(4.1 ) 

With reference to (2.1) and (3.1) it follows from (4.1) that 

). i(y,t) yi+n, (4.2) 

). i+n(y,t) = Fi(yJ+n,yJ,t) = Fi(Xi, Xi,t), (4.3) 

and hence when derived from the second-order system (2.1 ) 
the first-order system (3.1) specializes to the form 

Y-l+n=o, 

y+n_Fi(yJ+n,yJ,t) =0. 

(4.4) 

(4.5) 

We examine this relationship between first- and second­
order systems in order to determine how cyclic variables and 
concomitant special symmetries of a second-order system 
are affected by the above-mentioned reduction procedure. 
We also consider the applicability of Theorem 3.1 to those 
first-order systems derived from second-order systems with 
cyclic variables. 

Consider first the case in which the second-order system 
(2.1) is cyclic in a coordinate xr so that Theorem 2.1 (b) is 
applicable. It then follows from (4.3 )-( 4.5) that the asso­
ciated first-order system will be cyclic in the corresponding 
coordinate yr, and hence Theorem 3.1 will be applicable. 

Next consider the case in which a pair of variables 
(x', r) is cyclic in a second-order system (2.1), so that 
Theorem 2.1 (a) is applicable. As in the previous case the 
coordinate y will still be cyclic in the associated first-order 
system (4.4) and (4.5). It is to be noted, however, that the 
presence of the coordinates l + n, i = 1, ... ,n, in the n equa­
tions (4.4) precludes the possibility that any of the l + n 

could be cyclic in the associated first-order system (4.4) and 
( 4. 5). Thus Theorem 3.1 is applicable only for the cyclic 
coordinates y. Note, however, that the pair V,y' + n) will be 
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cyclic in the second half (4.5) of the first-order system (4.4) 
and (4.5). 

When first- and second-order systems of differential 
equations are associated in the above-described manner their 
respective symmetry mapping functions UI(y,t) and 
Zi(X,x,t) [solutions, respectively, to (3.4) and (2.9)] will 
be related in thatl 

Ui(y,t) = Zi(X,x,t), (4.6) 

(4.7) 

Hence there will still be symmetry mappings of the first­
order system (not described by Theorem 3.1) which are con­
comitant with a pair of cyclic variables (x', X') of the asso­
ciated second-order system. To find these mappings we may 
use the symmetry functions Zi(X,x,t) [(2.23) and (2.24)] 
associated with the cyclic variables (x', X') of the second­
order system and obtain by use of (4.6) and (4.7) the corre­
sponding mapping functions UI(y,t) of the associated first­
order system. These mapping functions are given in the 
following theorem. 

Theorem 4.1: If a system of n second-order dynamical 
equations 

Xi - Fi(x,x,t) = 0, i, ... ,n, (2.1') 

is cyclic in a pair of variables (x', X') in thataFilax' = o and 
aF il aX' = 0, then by the procedure of defining new variables 
/==x i

, /+ "==ii, the second-order system (2.1') is reduced 
to the system of N = 2n first-order equations 

j/-/+" = 0, (4.4') 

j/+"_Fi(y1+",yJ,t) =0, i,j= 1, ... ,n, (4.5') 

wherein (4.5') aFilay = 0 and aFilay+" = O. This asso­
ciated first-order system will admit an infinitesimalsymme­
try mapping 

y =/" + [U1(y,t) +;V(y,t)7l(y,t) ]&z, 1= 1, ... ,2n, 
(3.2') 
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t = t + "1°(y,t)8a, "1°(y,t) arbitrary, (3.3') 

where 

A,i(y,t) =/+", A,i+"(y,t) = F i(y1+",yi,t) = Fi(x,x,t), 
(4.8) 

and where 

US(y,t) = M(')(Y,l)t + N(')(y,t), 

UH"(y,t) =M(S)(Y,t), 

U1(y,t) = 0, I =/:-s or s + n; 

(4.9) 

(4.10) 

(4.11) 

the functions M (s) (y,t) and N (s) (y,t) are arbitrary con­
stants of motion of the first-order system ( 4.4') and (4.5') .• 

Remark 4.1: For the case M(S)(y,t) = 0, Theorem 4.1 
essentially reduces to a subcase of Theorem 3.1, for the cyclic 
variable y. • 
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A model of wave propagation in a slab O..;;x..;;L of a nonlinear random medium is considered. The 
index of refraction is k [1 + €(x,wlu€(x,L,w) 12)] 1/2, where €(x,a) = €m(x) + c[(n(x) 
+ i6(x»)a + O(x) + ir(x)], with € a small parameter, m,n,8,O,r suitable stochastic processes, 
u€(x,L,w) the wave field, and w;;..O the intensity of nonlinearity. The mean reflected power is 
evaluated from a certain nonlinear partial differential equation satisfied by the reflection 
coefficient R € (L,w). An infinite system of ordinary differential equations for the coefficients 
R ~ (L), n = 0,1,2, ... , in the expansion of R €(L,w) in powers ofw, is then derived, and the 
infinitesimal generator for the process [Ro R ~ R I R r ] , R n=R ~ (c L), is obtained, in the 
diffusion limit €-o, L-oo, cL = const. This allows us to compute (IR 12) ~ (IRoI2) 
+ 2w Re (Ro R r) as a function of c L. In the lossless case, 8 = r = 0, there is no correction due 

to the nonlinearity, in such a limit, and this remains true at least up to the order O(w2
). Some 

effects can be observed when dissipation (8) 0, r> 0) is taken into account. Numerical results 
are obtained and plots are given. 

I. INTRODUCTION 

Wave propagation in random media, that is in media 
whose properties are described only statistically, is of great 
interest in modeling several natural phenomena, e.g., in 
ocean acoustics and in optics of the atmosphere. Its analysis 
requires studying boundary-value (BV) problems for sto­
chastic differential equations (see Refs. 1-3 for general re­
ferences). 

Some linear stochastic models have been studied in Refs. 
1, 2, and 4-6, while the nonlinear deterministic case was con­
sidered in Refs. 7 and 8. However, propagation in nonlinear 
random media is important, for instance, in nonlinear optics 
and in electrodynamics of plasma. Therefore, the problem 
arises to investigate the joint effect of both nonlinearity and 
randomness. 

Below we propose a one-dimensional model for this pur­
pose. In the first approximation we consider the self-influ­
ence of a wave propagating through a plane-stratified slab of 
a random medium, as affecting the dielectric permittivity by 
its intensity, and neglect higher-order effects such as har­
monics generation. 

The paper is organized as follows. In Sec. II we trans­
form the original two-point BV problem for the wave field, 
into an initial-value (IV) problem for a nonlinear partial 
differential equation (POE) satisfied by the reflection coef­
ficient R €=R €(L,w), L being the thickness of the slab, w 
the intensity of nonlinearity, and E the size of the random 
fluctuations. An infinite system of ordinary differential 
equations (ODE's) is then obtained for the coefficients 
R ~ (L) in the expansion of R € (L,w) in powers of w. In Sec. 
III we compute the infinitesimal generator for the process 
solution [RoR~RIRr···RNR~], Rn-R~(cL), 
n = O,I, ... ,N, of that system truncated at the 2(N + l)th 

oJ Fulbright Scholar. on leave from the University of Padua. Padua. Italy. 

term, obtained in the diffusion limit. This is a limit that in­
volves random perturbations of small size E and large slab 
thicknesses L, as E-o, L_ 00, with c L = const. Indeed, 
many physical phenomena are affected by small random per­
turbations whose cumulative effects become important over 
long distances or time. Therefore such a limit provides a 
satisfactory description for several situations of physical in­
terest (cf. Refs. 9 and 10). 

In Sec. IV we compute the correction to the mean re­
flected power E{IRoI2} of the linear problem (w = 0), due 
to the nonlinearity. Various special cases such as the linear 
case itself with and without dissipation, as well as the nonlin­
ear lossless problem, can be recovered from our more general 
analysis performed for the nonlinear lossy problem. 

In Sec. V we report about the numerical treatment by 
which we evaluated the mean reflected power E{IR 12}, in 
the general case. This program is carried out by solving nu­
merically a certain system of linear singular parabolic equa­
tions. Various plots are given, correspondingly to several 
values of wand the loss parameters. In Sec. VI, finally, we 
summarize the results of the paper. 

II. FORMULATION OF THE PROBLEM 

Let u€ (x,L,w) be the time-harmonic scalar wave field at 
location x, with the factor e - i"'ol omitted. It satisfies the 
equations 

u~x + k 2[ 1 + €(x,wlu€(x,L,w) 12) ]u€ = 0, o<x <L, 
(2.1 ) 

u€ = e-ik(X-L) + R €(L,w)eik(x-L), x >L, 

u€= T€(L,w)e- ikx, x<O, 

(2.2) 

(2.3 ) 

where k is the free-space (real-valued) wave number and the 
random medium is supposed to occupy a slab located 
between x = 0 and x = L; w;;..O is the modulus square of the 
amplitUde of the wave impinging on the slab, i.e., the intensi­
ty of nonlinearity; R €(L,w), T€(L,w) are the complex re-

1760 J. Math. Phys. 27 (7). July 1986 0022-2488/86/071760-12$02.50 @ 1986 American Institute of Physics 1760 



                                                                                                                                    

flection and transmission coefficients that characterize the 
scattering properties of the slab. The dependence on k will 
not be displayed. 

The fluctuating part in the index of refraction has the 
form 

E(x,a) 

= Em(x) + ~([n(x) + i8(x)]a + O(x) + ir(x)}, 
(2.4) 

a=wlu"(x,L,w) 12, where Eis a small parameter characteriz­
ing the size of the fluctuations and m(x), n(x), 8(x), O(x), 
rex) are real-valued almost surely bounded wide-sense sta­
tionary stochastic processes, on an underlying probability 
space (O,.r.( ,P), with the dependence on the chance liJ,(()€O, 
omitted, as usual. Here E{.} will denote taking expected val­
ues, i.e., integration over 0, with respect to the measure P. 
Moreover, we assume that the processes above have the fol­
lowing properties. 

(i) m(x) is such that 

E{m(x)} = 0, E{m(x)m(y)} =p(lx - yl), (2.5) 

and satisfies a strong mixing condition, with mixing rate 
P( T) such that T 6P( T) W as T too (cf. Refs. 6 and 11). 

(ii) n(x), 8(x), rex), O(x) have constant (by station-
arity ), nonzero means, 

E{n(x)} = (7, (7 = const, 

E{8(x)} =8>0, E{r(x)}=r>O, E{O(x)} =0. 
(2.5') 

In particular, such processes could be truly constant. The 
sign of 8,r is chosen in view of the dependence -e - iOJol, so 
that they represent dissipation (cf. Ref. 12 for the case of 
linear propagation in transmission lines; see also, Refs. 13-
15 concerning nonlinear wave propagation in a deterministic 
lossy medium). 

Under these conditions, u"(x,L,w), R "(L,w), and 
T"(L,w) also become stochastic processes and we are inter­
ested in studying the statistical properties of R E and TE. 
More precisely we are mainly concerned with the evaluation 
ofthe quantities E{IR EI2}, E{I TEI2}, because of their phys­
ical meaning of mean power reflected and transmitted, re­
spectively, by the slab. 

From thecontinuityofu"(x,L,w), u! (x,L,w) across the 
boundary of the slab, using (2.1)-(2.3), we obtain the 
boundary conditions for Eq. (2.1): 

(2.6) 
u! (O,L,w) = - ikTE(L,w) = - ikuE(O,L,w) , 

u"(L,L,w) = 1 + R E(L,w) , 

u! (L,L,w) = - ik [1 - R "(L,w)] 

= - ik [2 - u"(L,L,w)] . 

(2.7) 

TheBV problem [(2.1), (2.6), and (2.7) 1 is then equivalent 
to the integral equation 

u"(x,L,w) = e-ik(X-L) + i: iL 
eiklx-sl 

XE(S',wluE(S',L,w) 12 )u"(S',L,w)dS' (2.8) 

(cf. Refs. 1 and 8). 
From (2.8) it is possible to obtain a nonlinear PDE sat­

isfied by R "(L,w), with the advantage that the original BV 
problem is reduced to an IV problem. The technique used to 
attain such a result is referred to as "invariant imbed­
ding." 1.8 We have 

aR" = 2ikR E + ik E(L,wIR" + W)(R" + 1)2 
aL 2 

+ b a:w", R "(O,w) = 0, (2.9) 

where 

b = w(a + a*), a = ik + ik E(L,wIR" + 112)(R" + 1) , 
2 

(2.10) 

and E(L,a) is defined in (2.4). 
In the linear case (w = 0), (2.9) reduces to a Riccati 

differential equation [cf. Ref. 6, formula (2.7); Ref. 1, for­
mula (7)]. 

Hereafter, we drop the label E. Assume that R (L,w) can 
be expanded in powers of w: 

R(L,w) = f R,(L)w', R (L) a'R(L,w) I 
,=0 r!' aw' w=o' 

(2.11) 

and transform (2.9) into an infinite-dimensional system of 
ODE's for the R, (L) 'so For simplicity, we shall confine our­
selves to within the order O( w), as we are interested in com­
puting the first correction to the linear case, due to nonlin­
earity. Therefore we just write 

(2.12) 

in (2.9). Something about the order O(w) will be stated 
below, in Sec. IV. We obtain, after a little algebra and equat­
ing the quantities independent of w, and the coefficients of w: 

dRo . ik ik 
-- = 2lkRo +-Em(Ro + 1)2 +-~(O+ ir)(Ro + 1)2, 
dL 2 2 

dR. [ (R - R *)] { 1 __ I = 2lkRI + kEm i(Ro + 1) - 0 0 RI + k~ -(in - 8) IRo + 112(Ro + 1)2 
dL 2i 2 

(2.13 ) 

+ [(i0- y)(Ro + 1) - 0 (Ro~/ ~) _ ~Ro~R ~) - r]RI} , 
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with the initial values 

Ro(O) = 0, RI(O) = O. (2.13') 

Note that Ro(L) is the reflection coefficient in the linear case. 
System (2.13) can be given a more standard form, by setting 

Rr=Zre,a, a==.2kL (real), r = 0,1 , (2.14 ) 

to "remove" the O( 1) terms on the right-hand side. We obtain 

dzo ik ·kL IkL 2 ik -'2 ·kL·k -=-Em(zo'!' +e- ) +-~-(8+ir)(zo'!' +e-' L)2 
dL 2 2 ' 

dz ik kc 
d~ = 2" Em (3Zrf!21kL -~ e- 2lkL + 2)zl + T{(in - 6) [ro(3 +ZO~)e2lkL +~ e41kL 

+ 3zo{1 +zo~) + (1 + 3zo~)e-2IkL +~ e- 4IkL ] 

+ [3U8 - r)zoe2lkL - U8 + r)~ e- 21kL + 2(i8 - 2r) ]Zl}' 

with the initial values 

(2.15) 

zo(O) = 0, ZI(O) = O. 

III. DIFFUSION LIMIT 

Instead of separating real and imaginary parts in (2.15), 
it is convenient to use complex notation (cf. Ref. 9). If we 
denote complex conjugate quantities by an asterisk, we get, 
with obvious positions, the system of four ODE's 

dzo F.-'2 
dL =Em o+t:-Ho , 

d~ 
-=EmF·+~H· dL 0 0' 

dz 
d~ = EmFI + ~(nGI + HI) , 

dzT 
dL =EmFT+c(nGT+HT), 

with the initial values 

(3.1) 

zo(O) =~(O) =0, ZI(O) =zT(O) =0. (3.1') 

Note that HOt HI include the dissipative terms (Ho=='O, 
HI==.O, when 6 = r = 8 = 0). 

For short, we write (3.1) as 

d~£ 
- = Em. + ~(nr + A) , (3.2) 
dL 

where 

~£={'I )1= 1 ..... 4==.[ZO~ ZI zTV, 
.=(~I);= 1 ••••• 4=[FoF~ FI FT]T, 

r=(rl )1= , ..... 4==.[00 G, Gr] T, 

A==. (AI )1= 1 ••••• 4==.[HoH~ HI HT]T. 

Therefore 

(3.3) 

(3.4) 

~2r+l==Fr' ~2r+2==F':' (r=O,1), (3.5) 

and similarly for the r r's and the Ar's. 

(2.15') 

Kahsminskii theorem to determine the dift'usion matrix and 
the drift vector associated with the stochastic process 
~(.)==.~o(.) obtained in the limit E-+O, L-+ + 00, with 
cL = const (diffusion limit) (see Refs. 6, 11, and 16). We 
have to compute the quantities 

d,(~)==.C,(~) + dC,(~), 
1 110

+ T CI(~)==.lim - qr,(~,s)ds (u==E{n(x)}), 
TrOD T 10 

(3.8) 

. 1 110 + T • dc,(~)==.lim -T E{AI(~,s)}ds, 1= 1, ... ,4. 
TrOD 10 

Note that cl==.O, c2==O, being r 1=0, r 2==.0. The parameters 
6,8,r appear only in the quantities dc,'s and therefore affect 
only the drift. 

The integrals in (3.6)-(3.8) have to exist uniformly in 
~, to. The assumed stationarity for the processes permits us to 
set to = O. 

It is convenient to display the dependence of .,r,A on 
L. From (3.1) and (2.15) we obtain 

Fr (L)==.i(k 12) [areia +Pre-Ia+ 2zr] , 

Gr (L )==.i(k 12) [rre'a + 6re -Ia + Er + 7Jre2la (3.9) 

+ 8re - 21a] (a=2kL, r = 0,1) , 

System (3.2) is in a suitable form for us to apply the where 
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ao=ro, /30=1, (3.10) 

Yo = 60 = Eo = 110 = fJo = 0 ; 

a l = 3zoZi = 3'1'3' /31 = - z3' ZI = - '~3' 

YI =ro(3 +zoz3') ='t(3 +'1'2)' 

61 = 1 + 3zoZ~ = 1 + 3'1'2' (3.ll) 

EI = 3zo(l + zo~) = 3'1(1 + '1'2) , 

111 =Z~ = 'i. 01 =z3' = '2' 
Let us first compute the quantities 

cl>i(X)cI>J(x-Y)'[~i(X)/a'J)cI>j(x-y) (the depen­
dence on ~ has been dropped, for short). The long though 
elementary calculations will be omitted. The structure of 
these quantities is as follows: 

cl>i (x)cI>j(x - y) 

== - (k2/4) [;Y(x)eiY + ;~(x)e-iY + ;g(x)] , 
( 3.12) 

and 

~i(X) cI>.(x _y) 
a'j } 

= - (k 2/4) [f{(x)eiY + tM(x)e- iY + fi<x)] , 
(3.13) 

where ;Z (x) and fi (x) are certain functions of x. More 
precisely, they are linear functions of e ± ix, e ± 21x, with coef­
ficients depending on the 'i'S. 

Now we can compute the diffusion matrix and the drift 
vector. By using (3.12) in (3.6), we have, for i,j = 1, ... ,4, 

= lim (lIT)Iij(n , 
Tloo 

(3.14) 

1 {i2kT 
. (r

2kT
.. ) = -16 0 p(y)e,\)y ;yCx)dx dy 

i2kT (r2kT ) + 0 p(Y)e-iYU
y 

;~ (x)dx dy 

i2kT ( r2kT 
)} + 0 p(Y)U

y 
;g(x)dx dy . (3.15) 

Here we used the stationarity' of m ( .) to set to = 0 and the 
same letter cI> i after changing 21es in s [ ==x ] ; P (y ) ==p (y /2k) 
and the order of integration has been changed. 

At this point we observed that only the terms constant 
with x in;Z (x), k = 1,2,3, playa role. In fact, the exponen­
tials give contributions, after integration, which are bounded 
for Te[O,oo). Thus, in view of the limit in (3.14), we just 
need to write 

r2kT 
Jy ;Z(x)dx XZ(2kT-y) + ( ... ), k=I,2,3, 

(3.16) 

1763 J. Math. Phys., Vol. 27, No.7, July 1986 

where dots denote T-bounded quantities and 

Xij-
1-

i,j= 1,3, 

i = 1,3, j = 2,4, 

i=2,4, j= 1,3, 

i,j= 2,4; 

i,j = 1,3, 

i = 1,3, j = 2,4, 

i = 2,4, j = 1,3, 

i,j= 2,4; 

i,j = 1,3, 

i= 1,3, j=2,4, 

i = 2,4, j = 1,3, 

i,j= 2,4. 

Hence, we obtain from (3.14) and (3.15) 

aij(~) = lim (lIn1ij(n 
Tloo 

k
2

{ i+ oo 

= - 4"" xY 0 p( r)e2
ikT 

dr 

(3.17) 

Here we have taken into account the mixing property of 
m(·), which entails 

li2kT I i+ 00 

o yp(y)dy.;;; 0 yp(y)dy< 00 

[cf. (i) and Ref. ll]. We conclude that 

1- k 2 [iJ .. r aij(~)= -( /4) XIJI+X~J2+X~J3]' 

i,j= 1, ... ,4, 

J2= i + 00 p( r)e - 2ikT dr, 

J3= i + 00 p( r)dr . 

(3.18) 

(3.19) 

Proceeding in a similar way, we can compute bi (~) from 
(3.7). Recalling (3.13) we have immediately 

1 1 {i2kT 
i2kT bl(~) = --lim - p(y) 

16 Ttoo Toy 

4 

X L [tPf (x)eiY + tM (x)e - iy 
J=I 

Renata Spigler 

(3.20) 
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Analogously to what has been done in (3.16) for the t/J~ (x), 
k = 1,2,3, let us denote bye~, k = 1,2,3, the terms in ~ (x) 
that are constant with x. We obtain 

Only these quantities contribute to b I ( ~) • We obtain 

bl (~) = - ~[JI(.± ev) + J2( ± e¥) 
4 1=1 1=1 fkT rille (x)dx = ef (2kT - y) + ( ... ) , 

i,j = 1, ... ,4, k = 1,2,3 , (3.21 ) 
+ J{tl e~)]. i = 1, ... ,4, (3.24) 

where 

i,j = 1,3, 

i = 1,3, j = 2,4, 

i = 2,4, j = 1,3, 

i,j= 2,4; 

i,j = 1,3, 

i= 1,3, j=2,4, 

i=2,4, j= 1,3, 

i,j= 2,4; 

i,j = 1,3, 

i = 1,3, j = 2,4, 

i = 2,4, j = 1,3, 

i,j= 2,4; 

AI==llo = (ik 12)(0 + ir) (ZoelkL + e- 1kL)2, 

(3.22) 

(3.23) 

with Jk , k = 1,2,3, defined in (3.19). 
From (3.8), (3.3), and (2.15), 

= 11m - U GU -1)/2 (s)ds, i = 3, 

{ 

. 1 iT 
n .. T 0 

CI(~)= liT (3.25) 
= lim - UGt2_1 (s)ds, i = 4. 

n .. T 0 

Recall thatrl==o, r 2=0. ThusCI==0,C2==0. By using (3.9), 
we have 

k 1 i2kT 
C3(~) =i-lim - U[rle2lb + c5 le- 2Ib 

2 Tr .. T 0 

+ EI + 1lle41b + 0Ie- 4Ib ]dx, (3.26) 

C4(~) = ct(~) . 

Suppose u#O [cf. (2.5') J. Then 

C3(~) =i(k/2)UEI , 

withEI defined in (3.11). 

(3.27) 

Finally, recalling that, from (2.15), (3.1), and (3.3), 

A3=HI = (kI2){ -c5[~(3 +zo~)rlkL +ro e4lkL + 3zo{1 +zoz3') + {1 + 3zo~)e-2IkL +~ e- 4IkL ] 

+ [3(i0 - r)z~lkL - (i0+ r)~ e- 2lkL + 2(i0 - 2r) ]ZI}, 
(3.28) 

A2 = Ar, A4 = At, 

we obtain from (3.8) and (2.5'), by an easy calculation, 

aCI = k(iO - r)zo, aC3 = - ~ k c5 zoe 1 + zo~) + k(iO - 2r)zl , 

while aC2 = (acI)·' aC4 = (ac3 )·. 

All computations in this section yield the infinitesimal generator 

(3.29) 

2N+2 a 2 2N+2 a 
L N=lj'2;l all(~) atlat} + I~I [bl(~) +dl(~>]atl' (3.30) 

withall(~)' bi(~)' dl(~) given by (3.18), (3.17), (3.19), (3.24) and (3.8), (3.29), (3.27). Actually we confined ourselves 
to N = 1, which corresponds to the statistical description of system (2.13) for Ro, R I • For N = 0 we recover the linear 
problem (w = 0), corresponding to the Riccati equation for Ro, which appears in (2.13). The general case of N~2 refers to the 
larger system for Ro, R~, R I , R r, ... ,RN, R ~ that we did not work out. 

It is convenient to decompose the (linear) operator L N into the sum 

LN=~ +vIIN +fN , (3.31) 

where~, vii N,fN are linear operators, with ~ actingonlyontl' t2 and%N acting only on t2N+ I' t2N+2: 

a 2 a 2 a 2 a a 
~==all-- + (a12 + a21)-- + a22 -- + (b l + dl)- + (b2 + d2)-. (3.32) 

at~ atlat2 at~ atl at2 

Here dl = acl , i = 1,2, as CI = 0 for i = 1,2; 
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IV. THE CORRECTION DUE TO NONLINEARITY 

From the expansion (2.13) for R(L,w), we obtain 

IR 12 = RR * = IRol2 + 2w Re(Ro R t) + O(wl) . 
(4.1 ) 

Recalling (2.15), we have also RoR t =zoz1', as a is 
real. Therefore, 

E{IR 12} = E{IRoI2} + 2w ReE{RoR t} + O(w2) 

= E{lzoI2} + 2w Re E{zo z1'} + O(w2) . 
(4.2) 

Here IR 12 represents the power reflected from the slab and 
E{ IR 12} its mean value. When W = 0, we recover the corre­
sponding quantities for the linear problem, IRol2 and 
E{IRoI2} (cf. Ref. 6). 

In this section we shall compute the first correction to 
E{IRoI2} due to the nonlinearity, as given in (4.2). 

Consider the problem 

UT =LI[U] (UT=~~)' 
(4.3) 

UIT=O = ~1~2 + W(~1~4 + ~~3) , 
for U =U(~\J~2'~3'~4;r), -r=:€2L, the operator LI being giv­
en by (3.30) for N = 1. Note that 

~1~2 + W(~1~4 + ~~3) =zo~ + w(zoz1' +~ ZI) 

= IRol2 + 2w Re(RoR t) . 
Therefore, the solution to (4.3) will enable us to calculate 

E{IRoI2}+2wRe(RoRt) = U(O,O,O,O;r) (4.4) 

as a function of -r=:i2L, i.e., the mean reflected power, ap­
proximated up to the order O(w). 

To solve (4.3), we set, as an ansatz, 

U(~1>~2'~3'~4;r) 

= .tiI(~I'~2;r) + &J (~I'~2;r)~3 + Crf (~I'~2;r)~4' 
(4.5) 

The initial condition in (4.3), considered as an identity in 

~3'~4' entails 

d('I"2;0) = '1'2' 

&J (~1>'2;O) = W~2' 

Crf (~I'~2;O) = W~I . 
(4.6) 

Substitution of (4.5) in (4.3) yields [denoting now by JI 
theoperatorJl I +51 in (3.31)] 
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UT = .tilT + &J T~3 + Crf T~4 

=LI[.tiI] +LI[&J~3] +LI[Crf~4] 

= 2'[.tiI] + 2'[&J]~3 + 2'[Crf]~4 
+JI[&J~3] +JI[Crf~4]' 

(3.33 ) 

(3.34) 

(4.7) 

because .til is independent of ~3' ~4 (and therefore 
JI[.tiI]==O) and 2' does not act on ~3' ~4 (and therefore 
2'[&J~3] = 2'[&J]~3' 2'[Crf~4] = 2'[Crf]~4)' From 
(3.33) and (3.34) we obtain 

a2 a2 

51 = a33 --+ (a34 + a43)--
a~~ a~3a~4 

a 2 a a + a44-- + (b3 + d3 )- + (b4 + d4 )-, 

a~~ a~3 a~4 
(4.8) 

a2 a2 

= (a 13 + a31 ) a~la~3 + (a14 + a41 ) a'la~4 

a2 a2 

+ (a23 + a32 ) a~~~3 + (a24 + a42 ) a~~~4 . (4.9) 

Therefore 

a&J 
+ (a23 + a32 ) a~2 ' 

..4 [Crf ~4] ==.A""I [Crf ~4] +..41 [Crf ~4] 

(4.10) 

In order to obtain a system ofPDE's for.til, &J, Crf from 
( 4. 7), considered as an identity in ~ 3' ~ 4' we have to display 
the dependence of alj,bl , and dl on the ~·s. To contain the 
lengthy and cumbersome calculations we have to perform to 
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get such coefficients, observe that the quantities X% 
(i,j = 1,2, ... ,2N + 2, k = 1,2,3), defined in (3.17), enjoy 
the properties 

ij ,)i ij ,,ji ··12 2N 2 XI ="{2' X3 ="{3' l,j= , , ... , + , (4.11 ) 

and thus 

k 2 I (u r31 u) . 1 2 2N 2 au = -T I XI +4X3 , 1= , , ... , + , 

k 2 [00 00 r31 ooJ 
aij +aji = -TIl (X'{ +xn +TX~ , 

i,j = 1,2, ... ,2N + 2 , (4.12) 

where 

r+ 00 

II=Jo p(r)cos2kTdr, 

r+ oo 

12= Jo p( r)sin 2kT dr, (4.13 ) 

13=2 i+ 00 p( r)dr, 

and r 31 13/11• Essentially,I I is the power spectral density of 
the process m (.) [cf. (2.5)]. 

As for the b;'s, setting 

b ~N)= _ ~[JI(2y 2 ef) + J2(2y 2 e~) 
4 )=1 )=1 

+ J3CJ:12 e~)], i = 1,2, ... ,2N + 2, 

we have, for each integer N> 1, 

b ~N+ 1) = b ~N) , 

for 1 <.i<.2N + 2. In other words, 

e% =0, 

(4.14) 

(4.15 ) 

( 4.16) 

for i = 1,2, ... ,2N + 2, k = 1,2,3, ifj> 2N + 2, i.e., passing 
from a given degree of approximation to the following, the 
components of the drift vector previously computed are un­
changed at the new st~ge. 

Let us first compute the coefficients of the operator .!f, 
i.e., that one describing the linear problem (w = 0). Using 
(3.10) we have a o =ro = tL /30 = 1 and hence 
a~ =zt2 = tL /3~ = 1, and, from (3.17) and (3.22), 
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1l,.2 12 ,.2,.2 
XI = ~ I' XI = - ~ I ~ 2 , 

Xii = -1, xi2=t~, 
II ./I.,. 2 12 ./I.,. ,. 

X3 =~ I' X3 = -~1~2' 22 ./I.,. 2 
X3 =~ 2· 

( 4.17) 

Computing the e%'s, i,j = 1,2, k = 1,2,3, we obtain 
2 2 2 

L e:
j
=2tl' " 1

0 

£.. e/=o, L e¥=4tl' 
j=1 

2 

j=i 

2 

j= i 

2 
(4.18 ) 

L eij=o, L e¥= 2t2' L e¥=4t2· 
j=1 j=i j=1 

By using (4.17) in (4.12), we get 

all = - (k 2/2)I13ti , 

a12 + a21 = (k 2/2) [11(1 + ti tD + 213tlt2] , 
( 4.19) 
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where we set 113-11 + 13. Note that the Ik's, k = 1,2,3, are 
real [cf. (4.13)]. Similarly, by using (4.18) in (3.24), we get 

bl = - (k 2/2) (/13 + iI2)tl' 

b2 = - (k 2/2) (/13 - i 12)t2 = bT. 

Similarly, as 

X:
3 

= - ti tzt3' Xtl = 3tlt3' 

X~3 = 4tlt3' 

xi
3 

= tzt3' Xi2 = - 3t"t~ t3' 

X~3 = - 4tzt3 , 

X:4 = - 3ti tzt4' X11 = tlt4' 

X~4 = - 4tlt4' 

Xi4 = 3t2,t4' X12 = - tl t~ t4' 

X~4 = 4tzt4' 

Xi4 = - 9tltzt3t4' X13 = - tltzt3t4 , 

Xj4 = - 4t3t4 , 

xt
3 = - 3tlt2 tL 

xf = - 3tlt2 t~, 
X

33 _ ./1.,.2 
3 -~3' 

Xf=4t~ , 

by using (4.12) we obtain readily 

(4.20) 

(4.21 ) 

a 13 + a31 = (k 2/2) [tlt2I1 - (311 + 213 ) ] tlt3==a13t3 , 

a23 + a32 = (k
2/2)[3tlt2I 1 + (213 - I,)]tzt3=a23t3' 

a14 +a41 = (k 2/2)[3t,tzl, + (213-II )]tlt4=a,4t4' 

a24 + a42 = (k 2/2)[tltzl, - (311 + 213)]tzt4==a24t4' 

a34 + a43 = k 2 [5tltzll + 13]t3t4=a34t3t4' (4.22) 

a33 = (k
2/2)[3t,t2I , -I3]t~=a33t~ , 

a44 = (k
2/2) [3tlt2I 1 - 13Jt~==a44t~ (a44=a33 )· 

The quantities aij depend only on tl and t2. 
As for the b/s we obtain 

4 

L ei
j = 3t3(1 - tlt2) , 

j=1 
4 

L ef = - t3(3tlt2 - 1) , 
j=1 

4 

L ef=4t3' 
j=1 

4 

L e1
j 

= (1 - 3tlt2)t4 , 
j=1 

4 

L e~ = 3t4(l - tlt2) , 
j=1 

4 

L e~=4t4' 
j= I 

and hence, 

(4.23 ) 

b3 = (k212)t3[3t,t2I, - (211 +13) - iI2]==f33t3' 

b4 = (k2/2)t4[3tlt2I1 - (211 + 13) + iI2] (4.24) 

= b r==f3 r t4==f34t4 , 

where/33 depends only on tl,t2. 
Finally we need the quantities di , i = 1, ... ,4 [cf. (3.8), 
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(3.29) ] . Recalling (3.27) and (3.10), (3.11), we have 

c i =c2=0, 

C3 = 3i (k /2) q('1'2 + 1),1' 

C4 = - 3i (k/2) q('1'2 + 1)'2· 

Then 

dl = k(if} - Y)Zo, d2 = dt , 

d3 = c3 + 6.c3, d4 = dr, 

where 

(4.25) 

(4.26) 

6.c3=kl + k~3' 6.C4 = (6.c3)* , (4.27) 

having set 

k l= - ~ M( 1 + '1'2)'1' k2= - k(2y - if}) . (4.28) 

Now we return to (4.7). By using (4.10), (4.22), 
( 4.24), and (4.26), it becomes 

U,. = 2'[J31] + 2'[~]'3 + 2'[CG']'4 

a~ + (/33'3 + d3)~ + a13'3--
a'i 

a~ 
+ a 23'3 --+ (/34'4 + d4)~ 

a'2 
a~ a~ 

+ a 14'4 a'i + a24'4 a'2 ' 

where the coefficients depend only on '1"2. 

(4.29) 

By identifying the coefficients of '3,'4 and the "con­
stant" when we compare (4.29) with U,. = J31,. + ~ ,.'3 
+ ~ ,.'4, we obtain the system 

J31,. =2'[J31] + (C3+kl)~ + (c4+kr>~, 
a~ a~ 

~,. = 2' [~] + a 13 --+ a23 --+ (/33 + k2) ~ , 
a'i a'2 

(4.30) 

a~ a~ • 
~,. =2'[~] +aI4--+a24--+ (/34+k2)~' 

a'i a'2 

to which we associate the initial values (4.6). 
Remark 4.1: If E{n(.)}eL[O,oo) and ~=y=f}=O, 

we have d j (~)==O for every i (cf. Sec. III). In this case J31 is 
uncoupled from ~ , ~ and therefore the effects due to non­
linearity are negligible. However, the stationarity of n ( . ) 
would imply E{n ( . ) }= q =0, in this case. 

Remark 4.1': The equations for ~, CG' are always uncou­
pled from each other and from the equation satisfied by J31. 
It is clear from this and from the IV's (4.6) that ~ = ~ *, as 

'2 ='t· 
Therefore we can confine ourselves to the system for J31 . 

and ~ only: 

with 
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J31 ('10'2;0) = '1"2' ~ ('1"2;0) = W'I . (4.32) 
By solving such a system, we shall obtain E{IRoI2} 
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+ 2w ReE{RoR t} = U(O,O,O,O;1") = J31(0,0;1"). 
Let us introduce polar coordinates p,r/J, being, I = pi!~, '2 = pe - j~, and set 

J31 ('1>'2;1") =a( p,1") , 

(4.33) 

This amounts to performing a Fourier analysis on the system 
above. It is clear from the IV's (4.32) that only the phase­
independent component of J31 ( pej~, pe - j~;1") is nonzero, 
etc. We get 

ac -(1 2)2 a
2
c +[O_p2)(1_9 p2 ) lac -- -p -- -XIP-

~ ~ P ~ 

+ [ _ 0 :~i)2 +4(4p2_l) -2XI)C, 

0<p<1, 1"1>0, (4.34) 

aa (1 2)2a
2
a+[O-p2)2 )aa -= -p -- -XIP-

a1"1 ap2 p ap 

+ ~(1 +p2) P w[(iq + ~)c - (iq- ~)c*] , 
kIl 

O<p< 1, 1"1>0, 

c( p,O) = p, 0 <p < 1 , 

a(p,O) =p2, O<p< 1, 

where 

1"1=(k 2/8)II1" (-r==€2L), (4.35) 

(4.36) 

Observe that the equation for c as well as its IV is real. 
Therefore c* = c and, in the equation for a, the coupling 
term becomes 

(4.37) 

Moreover, we can "remove" the singular term 
- - (1/p2)C in the equation for c, by setting 

c=C!p. (4.38) 

The easy calculations yield 

0<p<1, 1"1>0, 

c(p,0)=p2, O<p<l, 

a(p,O)=p2, O<p<l, 

where we set 

(4.40) 

The loss parameters X I' X 2 <X I > 0, X 2> 0) are, esseutial­
ly, damping-to-noise ratios. System (4.39) is a weakly cou-
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pled parabolic system, linear though degenerate at p = 1 and 
singular at p = O. The parameter X 2 is responsible for the 
coupling between the two equations in (4.39): ifX2 = 0 no 
effect due to the nonlinearity can be observed in our model. 
It can also magnify the effect of a small w> O. 

Several consequences of our analysis can be drawn at 
this point. First of all we can recover the linear lossless as well 
as the linear lossy problem, as special cases. 

A. The linear problem 

Using polar coordinates, the operator .!/ in (3.32) be­
comes 

k 2 { 2 2 a 2 [ (1 - p2 ) 2 a ] .!/ ,~==-II (l-p ) -+ - XIP-
P S ~2 P ~ 

[ 2 2 21 1 a2 
4 a } + (1+p) +4r3\PJp2a,p2+(XO- r21 )a,p , 

(4.41) 
where we set r21==I2III, Xo==SfJ IkII . 

As the coefficients in (4.41) are independent of ,p, we 
can restrict ourselves to the marginal generator, involvingp 
only: 

k 2 { 2 2 a
2 

[ (l_p2)2 ] a } 
.!/p=gII (l-p) ap2 + p - XIP ap . 

(4.42) 

Then we are able to compute the transition probability 
density P( p,L) for the process peL), given p(O) = 0, by 
integrating the appropriate forward equation (recall that 
p = l'ti=lzol==IRol). Then E{IRoI2} is computed by inte­
grating with respect to such a measure P. Explicit formulas 
can be obtained in this case, both for P and E{IRoI2} for the 
lossless problem, X I = 0 (cf. Ref. 6). The lossy problem and 
the stationary distribution existing in such a case have been 
studied in Ref. 12. 

Alternatively, E{IRoI2} can be evaluated directly by 
solving the backward equation, as follows. Setting 
.!/p=(k2/S)II.!/; in (4.42), consider the problem 

ur, =.!/;[u], O<p<I, 1'1>0, 

u(p,O) =p2, O<p< 1. (4.43) 

The linear parabolic equation in (4.42) is singular at the end 
point p = 0 and degenerate at p = 1. As both, the equation 
and the IV in (4.43), are symmetric in p, we can assume 

up (0,1'1) =0, (4.44) 

which permits us to dominate the singularity at p = O. No 
boundary condition is needed on p = 1. 

Finally, we obtain [recalling (4.35)] 

E{IRoI2}( 1'1) = U(O,1'I) 11'1 = (k'/S)I,rL 

= u(0,(k 2/8)IlcL). (4.45) 

The graph of E{IToI2} = 1 - E{IRoI2} for XI = 0 is 
plotted in Ref. 6, p. 17 (see also Ref. 5). 

Let us go back to the general case. 

B. The nonlinear 10881.88 problem 

It is rather surprising to discover that the model we have 
been studying does not exhibit any new effect when the non-
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linearity acts jointly with the randomness and dissipation is 
neglected. This is evident from system (4.39): In fact, if we 
set 6 = 0, the two equations decouple as when we set w = 0, 
and then a(O,1'I) yieldS the quantity E{IRoI2} of the linear 
case. 

Our goal is to compute the first nontrivial correction to 
E{IRoI2}, due to nonlinearity. As there is no contribution 
from terms of the order O(w), we went further and comput­
ed the correction oforderO(w2

). This can be done by gener­
alizing, in a rather obvious way, the method we followed to 
compute the O( w) correction. The rather elementary calcu­
lations are, however, lengthy and very cumbersome. We do 
not give here any details but just the conclusion: The surpris­
ing result is that also the O(w2) correction vanishes. We 
state this result as a theorem. 

Theorem 4.2: The mean power reflected from a slab 
[0,1.] of a one-dimensional nonlinear lossless random medi­
um, described by the refractive index given by (2.1), (2.4) 
with 6 = r = 0, is unaffected by the nonlinearity whose in­
tensity is w, at least up to the order O(w2), in the diffusion 
limit E-.o, L--+- 00, with c L = const. 

The same conclusion holds true even changing w into 
- w, though this represents a quite different physical prob­

lem . 
We stress the fact that the scaling assumptions in (2.4) 

playa decisive role in such a result. 
Also note that the values u = E{n(x)} and 

fJ E{fJ(x)} do not play any role. Indeed, we can see from 
the conservation of the energy associated with Eq. (2.1) that 
only the imaginary part of the index of refraction matters. 
Let us write (2.1), for short, in the form 

v" + /(x)v = 0, (4.46) 

with v(x)=uE'/(x)=k 2( 1 + E), and E defined in (2.4). By 
multiplying the left-hand side of (4.46) by v·, and the equa­
tion obtained from (4.46) by taking the complex conjugate, 
by v, and subtracting side by side, we get 

(v'v· - v·'v)' + 2i 1m/ex) Ivl 2 = O. (4.47) 

This can be integrated between 0 and L, yielding 

(v'v· - v·'v)(L) 

= (v'v· - v·'v) (0) - 2i SoL Im/(s) Iv(s) 12dS , 

( 4.48) 

and using the BV's (2.6) and (2.7), we obtain 

ITI2= I-IR 12_ rL 

..!..lm/(s)lv(s)jZds. (4.49) Jo k 
From (2.4) we get 

P r + PR + PD = 1 , 

where we set 

Pr =ITI2, PR=IR 1
2

, 

(4.50) 

PD=kc i L 

(6 wluE(s,L,w) 12 + r) lu'-(s,L,w) 12 ds . 

(4.51) 

HerePT,PR,PD are, respectively, the transmitted, reflected, 
and dissipated powers. Note that P D depends on all values of 
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the field inside the slab [O,L], and this still holds true in the 
linear lossy problem (w = 0, but r> 0). 

From (4.51) follows, of course, 

O<PT <I, O<PR <1, O<PD <I. (4.52) 

It is clear that we cannot compute PT from (4.50), 
knowing only P R' which is possible, on the other hand, in the 
lossless problem (PD=O). The same relations (4.50) and 
( 4.52) hold, replacing P T.P R ,P D with their expected values. 

C. The nonllne.r lony problem 

Let us go back finally to the full problem (2.13), de­
scribed statistically, in the diffusion limit, by the system 
( 4.39), with X. > 0, X 2> 0, w> O. Its solution will enable us 
to compute the O(w) correction to E{IRoI2} due to nonlin­
earity, in the lossy case. In the next section we shall perform 
a numerical integration of the system (4.39), for several val­
ues of X., X 2' w. Some information, however, can be obtained 
at once from (4.39), by direct inspection. 

It is easy to check that the same system (4.39) with the 
IV a( p,O) = 0 instead of a( p,O) = p2 yields 
a(O,1"I) = ReE{RoR r}, i.e., the correction term alone (the 
coefficient of 2w, to be more precise). In fact, this corre­
sponds to setting U I r-O = '1'4 in (4.3). From this it is 
clear that the solution c will be positive and thus a < 0 (as 
X2> 0). Therefore 

E{IRoI2} + 2w ReE{RoR r} <E{IRoI2} , (4.53) 

for w > 0, i.e., the mean reitected power is smaller due to the 
nonlinearity, with respect to the linear (dissipative) case. 
However, this does not mean at all that the mean transmitted 
power is greater, since in the dissipative case the relation 
Pr +PR = 1 is replaced by (4.50). 

V. NUMERICAL TREATMENT 

In this section we shall describe the numerical treatment 
that we performed on the parabolic system (4.39). Our pri­
mary goal is to compute a (0,7".) because 

E{IR 12}~E{IRoI2} + 2w ReE{RoR r} = a(O,7".) 

<IRI1
) 

1.0 
Wxl-O.1 

x "0.5 

XI"I 

x,"5 

X," 

0 2 4 6 kl "2 I,.IL 

<IRI1
) 

0.2...--.,---..,..---r---, 
X," 9 

wx.- -0.1 
~~:"""--.~ 

" -....... w"u. 
X.=O.I 

0.1 

o 2 • 
..l!.1 .IL 2' 

FIG. 2. Mean reftected power versus (k 2/2)I,rL for XI = 9 fixed and 
WX2 = - 0.1, 0, 0.1. 

[cf. (4.4), (4.5), (4.33)]. The problem is nontrivial because 
of the singularities atp = O,p = 1, and must be completed by 
specifying whether suitable boundary conditions are needed 
on p = 0 and p = 1 and, in case the answer should be affir­
mative, which boundary conditions they are. 

As for the boundary p = 0, we can exploit the fact that 
both, the equations and the IV's in (4.39), are symmetric in 
p, around p = O. It follows that the solution of (4.39) satis­
fies the conditions 

acl _aal -0 
ap p=o - ap p=o -

(5.1) 

[cf. (4.44)]. 
We observe that 

acl [ac]1 + - = p-+c =c(O ,7"1) 
ap p=o ap p=o 

(5.2) 

(as long aspac/ap -+0 as p-+O+ , e.g., ifaclap is bounded 
up to p = 0). Equation (5.3) tells us that ae;ap is "well 
behaved" asp-+O+. However, we do not know c(O+,7".) 
and we shall use the boundary condition (ae; ap) Ip = 0 = 0, 
by symmetry. 

Conditions (5.1 ) allow us to dominate the singularity at 
p = 0, as they enable us to replace the terms like 
[(PC p)/P)Cp] Ip=o by {:J(O)cpp Ip=o, in the numerical 
scheme. 

WX I " 0.5 /WX." I ................ ......-'-- ...... ~ ..... _··_········wxii!i·· ........ · .. · .... 

• .!.r .I L 2' 

o 246 

FIG. 1. Mean reftected power versus (k 2/2)llrL fordilferent values of the FIG. 3. Mean reflected power versus (k 2/2)llrL for XI = 9 fixed and 
loss parameter XI (XI = 0.5, 1,5,9) and!DX2 = 0.1 fixed. !DX2 = 0.5, 1,3. 

1769 J. Math. Phys., Vol. 27, No.7, July 1986 Renato Spigler 1769 



                                                                                                                                    

<IRI1) 

I .0 r:-~:-r--r----'-~::::!::::~:::C:=::I:==! 
XI=O.I WaO 

W=O 

WX =0.1 

0.5 

o 2 4 6 8 10 I 

Kr "L 2 I 

FIG. 4. Mean reflected power versus (k 2/2)/I£1L for XI = 0.1, WX2 = 0.1 
compared with the corresponding linear lossy case (XI = 0.1, W = 0). 

As for the boundary p = 1, if we consider the "limiting" 
form of the system (4.39) for p;::: 1, we obtain the hyperbolic 
system (nonstrictly hyperbolic at p = 1) 

ac ac 
-= - Lrl + (16-XI)(1-p)]­
a71 ap 

- [XI - 8 + 16(1-p)]c, 

aa aa A 

-= -XIP--2X2PC, 
a71 ap 

with the IV's 

C(p,O) =p2;:::1, a(p,O) =p2;:::1. 

(5.3) 

(5.4) 

We shall use (5.3) on the boundary p = 1 and in this 
way we handle the degeneracy of (4.39) at p = 1. In the 
linear problem, (5.3) reduces to the equation for a with 
w=O. 

Note that, under the hypothesis XI> 0 (dissipation), 
(5.3) is a hyperbolic system with outgoing flow. Therefore, 
no boundary condition is needed atp = 1, as is known. 

The actual implementation of system (4.39) has been 
done by using an implicit scheme of.finite differences, namely 
forward time ditferences and space-centered differences (the. 
Cranck-Nicholson scheme). At p = 0, the Neumann con­
ditions (5.1) were used, while at p = 1 we solved the prob­
lem [(5.3), (5.4)] as follows. We used, essentially, a 
Cranck-Nicholsonschemeatthepoint (N - !,j + !),N + 1 
corresponding to the location p = 1 (and thus N -! to 1 

<IRI1
) 

I .0 r-r---r--r---r---'::::::::!:=~=! 
X.= I 

x=0.5 w 0.1 
W a .1 

0.5 wX =0.5 
WXI=I 

o 2 4 6 8 I 

.!oI .I L 2 I 

FIG. S. Mean reflected power versus (k 2/2)/I£1L for XI = 1 fixed and 
WX2 = 0.1, 0.5,1. 
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wX.=0.5 

o 2 4 6 .rI .. L 2 I 

FIG. 6. Mean reflected power versus (k 2/2)/I£1L for XI = 0.5 fixed and 
WX2 = 0.1, 0.5, 1. Also the case X I = 0.5, WX2 = 0.1 is plotted. 

-llpI2), andj being the time index, in order to retain 
second-order accuracy. 

In Fig. 1 we plotted 

a(0,71 )=E{IRoI2} + 2w ReE{RoR Th:~E{IR 12}, 

as a function of (k 2/2)/lcL ex: 71, for WX2 = 0.1 and various 
values of XI (XI = 0.5,1,5,9). In this figure as well as in all 
the others, the upper curve approaching 1 when 71- 00 rep­
resents E{IRoI2}, obtained in the linear lossless case w = 0, 
XI = 0 (cf. Ref. 6). 

When X I is increased, the corresponding curves are 
lowered: In fact, we expect that the mean transmitted power 
decay to zero, by some localization property, and thus the 
mean dissipated power increase with X I' Note that X I also 
affects the linear problem alone. 

In Fig. 2, we compare the graphs of a (0,7 I) correspond­
ing to X I = 9 and wx 2 = - 0.1, 0, and 0.1. In Fig. 3 we kept 
fixed XI = 9 and varied WX2 (WX2 = 0.5,1,3). Again, in­
creasing WX2 shows an increased dissipation. Note that, 
while w must be chosen "small" if we want a (0,7 I) to ap­
proximateE{IR 12} [cf. (2.12)],alargeX2canmagnijjlits 
effect, because w enters the system (4.39) only via the pro­
duct WX2' Anyway, it is the parameter WX2;':0 that allows 
the coupling between the two equations in system (4.39): If 
X 2 = 0, there is no effect due to nonlinearity, in this model, as 
when w = 0, even though X I > O. 

In Fig. 4 the graph of a (0,7 I)' obtained for X I = 0.1 and 

URI!) 

I. 0 r...---r-~-r:::::::!:::::::J:::::::j 

0.5 

o 2 4 6 2 
.!.I .2 L 21 

FIG. 7. Mean reflected power versus (k 2/2)/I£1L for XI = 0.5 [XI = 1] 
and w = 0 (linear case), and XI = 0.5 [XI = 1] and WX2 = 0.1. 
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WX 2 = 0.1 is compared with the corresponding linear lossy 
case (XI = 0.1, w = 0). In Fig. 5 we show several graphs of 
a (0,1'1 ), obtained for the fixed value of X I = 1, by varying 
WX2 (WX2 = 0.1,0.5,1). The same is done in Fig. 6, for 
XI = 0.5. In Fig. 5, however, the curve corresponding to 
XI = 0.5 and WX2 = 0.1 is also drawn, for comparison. 

In Fig. 7, finally, we show, for the purpose of compari­
son, the graphs obtained in the linear case w = 0, X I = 0.5, 
and the nonlinear case WX2 = 0.1, XI = 0.5, as well as the 
like when XI = 1. 

In all figures there is clear numerical evidence that some 
nontrivial stationary value exists [corresponding to the solu­
tion to system (4.39) with a /a1'I==O)' The physical interpre­
tation of this fact can be given as follows. The unit amplitude 
wave impinging on the slab of random medium penetrates 
and undergoes several (multiple) reflections by the random 
scatterers. During such a process, it is partially absorbed by 
the medium. The fraction that penetrates more and more 
deeply is completely absorbed before returning back to the 
interface vacuum-random medium. Therefore, if, for ran­
dom fluctuations of a given size and spectral density, the slab 
is sufficiently thick (i.e., 1'1 is large enough), there is a con­
stant amount of mean reflected power, say PR (00), and the 
same is true for the mean dissipated power, 
PD(oo) = I-PR (oo) [PT(oo) =0]. 

VI. CONCLUSIONS 

In closing, let us summarize the results of the paper. The 
fact that there is no correction to the mean reflected power 
due to the nonlinearity, at least up to order O(W2), with 
respect to the linear case W = 0, in the lossless model, is rath­
er surprising. The explanation must be sought in certain 
averaging operated by the nonlinear term in equation (2.1), 
in view of the particular scaling assumptions that assign a 
certain relative importance to the nonlinearity compared to 
the randomness. Indeed, a similar behavior has been recent­
ly observed in Ref. 17, where, essentially, the same equation 
(2.1) was studied, associated, however, with an initial-value 
problem. Anyway, the results obtained in this paper favor­
ably agree with those observed in numerically simulated ex­
periments, 18 where the case E = O( 1) was investigated also. 
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The direct and inverse problem associated with the reduced wave equation expressed in 
momentum space (Fourier transform space of the spatial variable) is considered. It is shown that 
the right inverse of the scattering operator associated with complex scattered field amplitude 
T(k ',k) exists for the case where the index of refraction n(x) is real and satisfies certain 
smoothness conditions. A quadratic integral equation involving only T(k ',k) is obtained that 
represents a necessary and sufficient condition for T(k ',k) to be a complex scattered field 
amplitude associated with a real index of refraction. For the actual physical inverse problem 
where only on-shell (Ik '1 = Ik I) values of T(k ',k) are known, the inverse problem involves 
solving this nonlinear system for off-shell data from on-shell data. Several other nonlinear systems 
that can be used are derived. Once T(k ',k) is known for k ',k, n(x) is readily obtained. 

I. INTRODUCTION 

The direct and inverse scattering problem associated 
with the reduced wave equation expressed in momentum 
space (the Fourier transform space of the spatial variable) is 
considered. The advantage of this approach is that the direct 
and inverse problems are related through a single integral 
equation. Such an approach has been extensively treated in 
the literature for the Schrodinger equation (see Faddeev,1 
Newton,2 and Friedrichs3). The advantage that the Schro­
dinger equation has over the wave equation is that the poten­
tial can be treated as a perturbation of an operator, and the 
inverse problem then involves the perturbation of the spec­
trum. Such is not the case for the wave equation. There have 
been attempts4-6 to treat the reduced wave equation in mo­
mentum space, but the emphasis has been on obtaining a 
Born or Neumann-type series solution to the problem. 

A key assumption that will be taken throughout is that 
the index of refraction n (x) will be real. 

In Sec. II, the direct scattering problem is formulated in 
the Fourier transform space of the spatial variable xeR3. The 
well-known integral equation [Eq. (8)] in momentum 
space relating the inverse transform V( k) of n2 (x) - 1 and 
the far scattered field complex amplitude T(k ',k) is given. In 
Sec. III, asymptotic estimates and smoothness properties on 
these latter two quantities are derived. 

In Sec. IV, a necessary condition is formulated to insure 
that T(k ',k) be a solution of the integral equation [Eq. (8)] 
corresponding to real index of refraction. This condition 
[Eq. (17) of Lemma 1] is a quadratic nonlinear integral 
equation involving T(k ',k) only. 

It is shown in Sec. V that the reality condition on n(x) 
implies the existence of a right inverse of an operator, which 
is the sum of the identity and a singular integral operator 
containing T(k ',k) in its kernel. Conditions for which the 
operator is unitary are given. 

In Sees. VI and VIII, this operator is used to show that 
the inversion ofEq. (8) leads to a solution corresponding to 
a real index of refraction. [By inversion, we mean, given 
T(k ',k) for all k ',keR3, to determine V(k) uniquely.] 

Finally, in Sec. VIII, the inverse scattering problem is 
formulated. It involves solving the nonlinear integral equa­
tion (17) to obtain values of T( k ' ,k) for all k ',keR3 from 
knowledge of on-shell values Ik 'I = Ik I only. Other nonlin­
ear systems useful for determining off-shell values from on­
shell values are presented. Once T( k ',k) is known for all 
k ',keR3, then n(x) can be recovered. 

In the analysis that follows, the following notation will 
be used: If keR3, then k 2 = k·k and Ik I = (k.k) 1/2. 

In addition we will define the Hilbert space ,j(P of 
.!t" 2(R3) functions with inner product 

(f,g) = r f(P)g(p)dp, 
JR3 

as well as the Hilbert space,j(P 8,j(P of functions g(k ',k) of 
the two variables k,k 'eR3. Here the inner product is given by 

(f,g) = ff f(p,q)g(p,q)dpdq. 

R 3 XR3 

II. DIRECT SCATTERING PROBLEM 

From Leis 7 the scattering problem associated with an 
incident plane wave ui(x,k) = exp(ik.x), 

au'+k 2n2(x)u'= _k2(n2(x) _1)ui, xeR3, 

lim (au' - ikU')- 0, r = Ix I, ( 1) 
1'-+00 ar 

has a unique solution if (n2 
- 1) is continuous and has com­

pact support, i.e., (n2(x) - l)eCo(R3). Here of course 
u' (x,k) represents the scattered field. 

From the integral formulation of ( 1), 

u(x,k) =ui(x,k) +!.:.. r [n2(y) -1] 
41r JD 

eilkllx -yl 
X I I u( y,k)dy, 

x-y 
(2) 

involving the total field u = ui + u' [with the support of 
n 2(x) - 1 being given by the domain D], the far scattered 
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field is obtained in the usual manner: 

lim 41rlxle-i'k',X'u'(x,k)_(217')3k2T(k',k), (3) 
Ixl"""" 

where k' = x/lxl, and 

T(k',k) =_1-3 r (n2(y) -1)e-ik'·Yu(y,k)dy. (4) 
(217') JD 

The direct scattering problem is expressed in momen· 
tum space by taking the appropriate (inverse) Fourier trans· 
form. The transform pairs for the scattered field are given by 

u'(pk) =y-I[UI
] =-I-fe-iP,xU'(Xk)dX (Sa) 

, (217')3 " 

u'(x,k) = Y[ul
] = f e!P-xu'( p,k)dp. (5b) 

The (inverse) Fourier transform of (n2(x) - 1) will be de. 
noted by V( p) as follows: 

Yep) =y-l[n2-1] 

=_1_ r e-V>'X[n2(x) -l]dx. (6) 
(217')3 JD 

By taking the (inverse) Fourier transform ofEq. (2), one 
obtains the well-known result6 

ul
( p,k) = k 2T( p,k)/( p2 - k 2 - iO), (7) 

which relates the transform of the scattered field to the far­
scattered complex field amplitude. Furthermore, on replac­
ing the total field u (x,k) in Eq. (4) by 

u (x k) = eik.x + f ei/l'X k 2T( p,k )dp 
, 2 k 2 iO ' p- -

the following equation in momentum space is obtained6
: 

T(k' k) = V(k' - k) + k 2 f V(k' - p)T(p,k)dp . (8) 
, p2_k 2_iO 

The importance of this equation is that it relates the 
scattered far field amplitude T( p,k) to the V(k), the (in­
verse) Fourier transform of n2 (x) - 1, and hence is useful 
for the direct problem (to determine T from V) and for the 
inverse problem (to determine V from T). 

III. ESTIMATES FOA ~k' - k) AND 7lk' ,k) 

For the direct scattering problem to be unique, 
n2 (x) - 1 was required to be continuous with compact sup­
port.7 However, it was pointed out8 that the condition of 
continuity could be relaxed to allow the important physical 
case of piecewise continuity on n (x). By this, it is meant that 
the domain D (the support of n2 

- 1) is decomposed into a 
finite number M of domains Dj , bounded by surfaces Sj suffi­
ciently smooth so that Green's theorem could be employed 
in each region Dj • Furthermore n (x) would be continuous in 
each region Dj with finite jump discontinuities across~, and 
both u and the normal derivative aul an would be contin­
uous across ~. 

From the result that V(k) = Y-I(n 2 - 1) and that 
n l 

- 1 is continuous or piecewise continuous with compact 
support, we can state that V(k)eC" (R3 )n.? l(R3 ). Fur­
thermore, if we define the mth partial derivative 
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am 
~m= , m=m l +m2+m3, kleR, 

akj' ak i" ak ;'> 

and m 1,m2,m3 are positive integers or zero, then it can be 
shown that 

~mV(k)e.? 2(R3 ), for all finite m. 

However, we cannot make any statements on the behav­
ior of Vas I k 1-00, unless we specify some smoothness. If 
n2 

- 1 is piecewise C 2 in D, then using Green's theorem in 
each of the subdomains Dj , it can be shown that 

(217')3V(k) = __ 1_ r e - ik.xV2n dx 
k 2 JD 

_ ~ i: r {ae-
ik

.
X 

[n 2 - I] ~ 
k J= I JSj an 

_ elk.x 
[ a(n:: 1) ] : }du, (9) 

where [n 2 
- 1] ~ represents the jump in value across S}' 

The first term on the right-hand side ofEq. (9) is o( 11k 2). 
The second term is zero if n (x) is continuous everywhere. 
Otherwise it can take on values O( 1IIk I) to O( 11k 2) de­
pending upon whether the stationary values of integrand 
(points for which k is perpendicular to the surfaces) occurs 
at isolated convex points of finite curvature or infinite curva­
ture, or are portions of a flat surface. The third term vanish­
es, of course, if n (x) is C I, otherwise this term at worst is 
0(1lk 2). 

If n (x) is piecewise C I, then it can be shown that 

(217')3V(k) =.J.... r e - ik,xk.Vn2 dx 
k 2 JD 

+~ i: r k.nje-ik,x[n2(x) -1]: du, 
k j= 1 J~ 

where nj is the unit normal to ~. The first term on the right­
hand side is o( 11k 2) and the remaining term vanishes if 
n2(x) is continuous, otherwise it takes on valuesO( 1IIk I) to 
O(1Ik 2). 

Henceforth, the degree of smoothness will be postulated 
by specifying that V(k) behaves like Ik 1- I - (/0,0 < ()o < 1, as 
Ik 1-00. Since V(k) is continuous and dift'erentiable, we 
have the Holder conditions 

V(k) <;C(1 + Ik I> - I - Bo, 

lV(k +h) - V(k)I<;C(1 + Ik I) -I-Bolh I", Ih 1<1, 
(10) 

where the Holder index ! <I' < 1. The lower limit on the 
index I' is taken to be ! rather than the usual 0 because of 
additional restraints that will be placed later on in the ana1y-
sis. 

Definition: Y B .. " is the set of Holder-continuous func­
tions I (k ' ,k) of the two variables k ',k in R3 with estimating 
functions (1 + I k' - k I ) - I - Bo and indices 1', satisfying the 
conditions (with Ih 1<1 and Ih '1 < 1) 

I/(k ',k) I<;C(1 + Ik' - k I) -I-Bo, 
I/(k' + h ',k + h) - j(k',k)1 (11) 

<;C(1 + Ik' - k I> -1-BO(lh 'I" + Ih I"), 
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where! <Jt < 1 and 0 < 00 < 1. 
Thus as a function of the two variables, V(k' - k) be­

longs to the set Y 8 .. 1" In addition, because V(k) is contin­
uous and has estimates given by (to) with 00 >0, we have 
the important result 

V(kl-k)/lk'llkleJf"®Jf". (12) 

This latter result follows from the identity 

=J ( jV(p>j2 dp, 
JR> !PI 

where 

J = 211" (00 ~ In I t + 1 I dt. 
Jo t t-l 

The condition that (n2(x) - 1) be piecewise continuous 
and have compact support also will infer that the g'm 
X V( k I - k) satisfy conditions ( 11) and (12) for every fin­
item. 

In place of conditions (11) and (12), Prosser6 required 
that V(k' - k) belong to a Banach space associated with 
condition (11), but did not include the Hilbert space given 
by condition (12). In addition, as will be shown next, one 
has to use sharper conditions on T(k ',k) in place of condi­
tions (11). 

Forfixedk, the same analysis as was done for V(k ') can 
be applied to T( k I ,k) , treating it as a function of k ' , It follows 
then that with k fixed, T( k I ,k) eC co (R 3) n2" 2 (R 3). Since 
u(x,k) is C 2 in each domain Di and both u and au/an are 
continuous across surfaces of discontinuity in n (x), one can 
obtain similar estimates for the behavior of T( k ' ,k ) as 
Ik 'I~oo, as for V(k '). Thus we can conclude that as a func­
tion of k I, T(k ',k) is bounded as follows: 

IT(k ',k)I<C(1 + Ik-k'I)-1-80
, kfinite, 

IT(k '+ h I,k) - T(k ',k) I 
<C(1 + Ik - k 'I) - 1- 80 lh 'I 1', k finite, 

with Ih 'I < 1. 
The behavior of T(k ',k) as a function of k and, in parti­

cular, as (k)~oo is much more difficult to estimate. Most 
important when k '= k (forward scattering), the behavior 
of V(k ,_ k) and T(k ',k) are entirely different since 
V(k '_ k) becomes a constant V(O), where T(k,k) remains 
a function of k, going to zero as (k )~oo. This can be seen as 
follows. When n (x) is sufficiently smooth, and the scatter­
ing process is sufficiently weak so that there are no caustics 
or multiple reflections, then u (x,k) has the asymptotic form 

u(x,k) _a(x)ei1k 1",[ 1 + D( 1I1k I)]. 

In the weak scattering approximations (rays approxi­
mated by straight lines) then 
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u(x,k)e-ik'X_expi IX (n(x') -l)k·dx', 

where the integral is along a line through the point x and in 
direction k. Upon insertion into expression (4) for T(k ',k) 
with k ' = k, it can be seen that the resUlting integral can be 
integrated by parts along the direction of the rays, yielding 
an expression that is the order of 1I1k I. 

This suggests that T( k ',k) has the estimating function 

IT(k ',k)I<C(1 + Ik' - k j) -1-80(1 + Ik I) -y (13a) 

and the Holder condition with index flo > ! 
IT(k' + h I,k + h) - T(k',k)1 

C[lh'IP+lhI P] 
(13b) 

An upper bound estimate for the positive constant r will be 
obtained by comparing estimates of the various terms in Eq. 
( 18). Here r will depend upon 00 , 

Set 

F(k' k) =k 2I V(k'-p)T(p,k)dp . (14) 
, 2 k 2 '0 P - -I 

It can be shown (see the Appendix), that if V(k I - k) and 
T( k I ,k) satisfy the respective Holder conditions (11) and 
( 13), with Holder indices flo > !, then 

IF(k',k)I<C(1 + Ik' - k I) -1-80(1 + Ik 1)2-8'-y, 

and 

IF(k' +h',k+h) -F(k',k)1 

C [Ih '11/2 + Ih 11/2] 

< (1 + Ik' - k 1)1+80(1 + Ik I) -~/2+8'+Y' 
where () , < ()o but can be made as close to 00 as possible. 

It can now be seen, using the above estimate for expres­
sion (14), that in order for Eq. (8) to be satisfied with a 
positive value of r it must have the following upper bound [if 
V(O);fO]: 

r+ ()o<~ + o. (15) 

As pointed out earlier, T( k ',k), as a function of the vari­
ablek', is C 00 (R3

). In fact it can be shown that gm'T(k ',k) 
e2" 2(R3

) (where the prime indicates differentiation with 
respect to k '). Furthermore gm'T(k ',k) can be obtained 
from T( k ',k) and g m' V( k I - k) through the following re­
lation obtained by differentiation of Eq. (8): 

gm'T(k ',k) = gm'V(k' - k) 

k2I gm'V(k' -p)T(p,k)dp . 
+ 2 k 2 '0 P - -I 

(16) 

The interchange of the order of integration and differenti­
ation can be justified using the Holder conditions. 

It should be pointed out in addition that it can be shown 
that T(k',k)/Ik/llk Ie Jf"®Jf". 

IV. NECESSARY AND SUFFICIENT CONDITIONS ON 
7lk' ,k) 

Here we want to establish certain properties of T( k ',k) 
arising from it being a solution ofEq. (8). Some of the results 
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that are derived here may hold for less restricted conditions 
on V(k) or n2(x) - 1; however, the reality condition on 
n2 (x) - 1 is essential. As a first step we want to prove the 
subsequent fundamental Lemma. Its proof depends upon 
two main properties of V(k' - k) as a function ofthe two 
variables k ' and k; namely, the following reality and transla­
tion invariance relations holding for all k,k 'eR3: 

(i) qJ(k ',k) = ~(k,k') (reality), 

(ii) qJ(k' + h,k + h) = qJ(k ',k), for all heR3. 

Lemma 1: If V(k)eCOO (R 3 )n2"2(R3
) and satisfies the 

Holder estimates (10), then the solution T(k ',k) ofEq. (8) 
satisfies the relation 

r(k - h k') + k 2 f T(p,k)T(p - h,k')dp 
, 2 k 2 '0 P - -I 

= T(k' +h k) + k'2 f T(p,k')T(p+ h,k)dp 
, p2 _ k ,2 + iO ' 

(17) 

for all k,k ' ,heR3
• 

Proof: First make the transformations k'-q + h, 
k-+k + h, p-+p + h in Eq. (8) and employ the reality and 
the translation invarianceproperties on V(k' - k) to obtain 

T(q + h,k + h) 

= V(q -k) 

+ Ik+h 12f V(q-p)T(p+h,k+h)dP. (18) 
II' + h 12 - Ik + h 12 - ;0 

In a similar manner, use the transformation k '-+k, k-+k', 
;-+ - ; in Eq. (8) and the before-mentioned properties of 
V(k' - k) to yield 

T(k,k') = V(k'-k) +k'2f V(p-k)T(p,k')dP. 
p2_k,2+;0 

Then operate on Eq. (18) with 

k,2 f T(q,k ') ... dq 
q2-k,2+;0' 

(19) 

The resulting left-hand and right-hand sides become, respec­
tively, 

and 

k'2 f T(q,k')T(q + h,k + h)dq 
q2 - k,2 + iO 

k'2f V(q-k)T(q,k')dq 
q2 _ k,2 +;0 

+lk+hI2 f T(p+h,k+h)k'2 
Ip+h 12_lk+h 12-;0 

(20) 

xf V(q-p)T(q,k')dqdp . (21) 
q2 _ k,2 +;0 

Here the change in the order of integration can be justified by 
first replacing terms q2 - k ,2 + iO and 
II' + h 12 - Ik + h 12 - ;O,respectively,byq2 - k,2 + iEland 
II' + h 12 - Ik + h 12 - ;E2, where EI,E2 are small positive 
quantities, then interchanging the order of integration using 
the Holder properties (13) of T(k ',k) and finally taking the 
limit as the E'S-+ O. 
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Using Eq. (19), expression (21) reduces to 

T(k,k') - V(k' -k) + Ik+h 12 
xf T( p + h,k + h)[T( p,k') - V(k' - p) ]dp 

I p + h 12 - Ik + h 12 - iO ' 

which in tum can be reduced further [on using Eq. (18)] to 

T(k,k') - T(k' + h,k + h) 

+ Ik+h 12f T(q,k+h)T(q-h,k')dq . 
q2 _ Ik + h 12 - iO 

Equation (17) is obtained by equating the above expression 
to expression (20), then replacing k by k - h. 

Lemma 2: If T(k ',k) satisfies the Holder conditions 
(13) and Eq. (17), then T(k ',k) satisfies Eq. (8) with 

V(k'-k) = T(k'-k,O). 

Proof:Setk=k'=OinEq. (17) to give 

T(h,O) = T( - h,O). 

(22) 

Then set k ' = 0 in Eq. (17) and use the above result in the 
form T(k - h,O) = T(h - k,O) to obtain 

T(h - k,O) + k 2 f T(hp~ ~~;~p:)dp = T(h,k). 

This is the same as Eq. (8) if one sets 
V(k' - k) = T(k' - k,O). 

v. THE OPERATOR % 

Define the integral operator % by 

% tfJ=f IkllpIT(p,k)tfJ(p)dp 
k p2 _ k 2 _ iO (23) 

with domain, the dense set of functions tfJ(k)e K satisfying 
the Holder conditions with! < p, < I, 

Ilk ItfJ(k)I<C(1 + Ik I>-P 
Ilk + h ItfJ(k + h) -Ik ItfJ(k) I (24) 

<C(1 + Ik I> -P Ih II', Ih 1<1. 

It can be shown, using the Holder conditions on T(k ',k) 
given by Eqs. (13), that %ktfJ has the properties (see the 
Appendix) 

Ilk l%ktfJl<C( 1 + Ik I) -P', 

Ilk + h l%k+htfJ -Ik l%ktfJl<C(1 + Ik I) -P'lh 11
/
2, 
(25) 

where {J' = r + f)o + {J - ~ - O. It follows that for {J suffi­
ciently large, %t/Je K. 

The adjoint operator %* is given by 

(26) 

For the case when % operates on a function tfJ(k ',k) of 
two variables the following notation will be employed to des-
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ignate which variable is treated as a constant: 

(~ + %k )p;(k ',p) 

= ;(k ',k) + f Ik II plT( p,k);(k ',p)dp . 
p2_k 2 _;0 

Theorem: If the operator % defined by Eq. (23) is such 
that T( k ' ,k) satisfies the conditions of Lemma I, then 

(~+ %)(~ + %.) =~. (27) 

Proof: It follows immediately from Eq. (17) with h = 0 
that 

T(k ',k) _ T(k ',k) = f T( p,k') T( p,k) [(k 2 - k '2) p2 + iO(k 2 + k '2) ]dp , 
(p2 _ P _ iO)(p2 _ k,2 + ;0) (28) 

and since the right-hand side ofEq. (28) can be shown to be 
equivalent to 

- 2 
(k 2 _ k'2 + iO) f T(p,k')T(p,k) pdp 

(p2 _ k 2 _ iO)( p2 _ k'2 + iO) , 

Eq. (28) reduces to 

T(k',k) T(k,k') 
k'2_k 2_iO + k 2-k,2+iO 

+f p
2
T(p,k')T(p,k)dp =0. (29) 

(p2 _ k 2 _ iO)(p2 _ k,2 + iO) 

It is seen that ifEq. (29) is multiplied by Ik Ilk '1, then the 
resulting left-hand side is the kernel of the operator 
% + %. + %% •. Hence it follows that 

% + %. + %%. = 0, 

and the results given by Eq. (27) are obtained. 
The result of this is that ~ + %. is the right inverse of 

~ + %. This depends upon the result, namely Eq. (17) of 
Lemma 1, being valid for the case h = 0 only, which corre­
sponds to the reality condition on V(k ',k). 

The question now arises as to whether or not ~ + %. is 
the left inverse of ~ + %. To examine this, set 

(~ + %.)(~ + %) = jj3 = ~ - 0, 

- 0 = % + %. + %.%. 

It can be seen using Eq. (27) that 

$2 = jj3, jj3. = jj3, 

(30) 

(31) 

(32) 

hence as expected, jj3 is a projection operator. Thus it follows 
that 

0 2 =0, 0·=0. (33) 

This immediately says that 0 has eigenvalues 0 and + 1. 
From Eqs. (27), (30), and (33) it can be deduced that 

(~+ %)0 = O(~ + %.) = O. (34) 

The operator 0 can be expressed directly in terms of an 
integral operator 

0k U = f Q( p,k)u( p)dp, (35) 

where the kernel Q(k ' ,k) is given explicitly by the following 
relation: 
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(k'2 _ k 2 - iO)Q(k ',k)/lk Ilk'l 

= - T(k ',k) + T(k,k') 

+ fT(k,p)T(k',P) 

[ 
_ k 2 k'2] 

X k 2 _ p2 + iO + k,2 _ p2 _ iO dp. (36) 

When Ik 1= Ik '1, it is seen that the right-hand side of Eq. 
( 36) reduces to 

- T(k ',k) + T(k,k') 

+ 1Tilk 1
3 L T(k,p)T(k',p)dOp , 

where the integral is over the unit sphere, and Ipi = Ik I. 
Using the well-known2 reciprocity result 
T(k', - k) = T(k, - k') (valid for Ik 1= Ik'l) and Eq. 
(17) with h = 0, Ik 1= Ik '1, it can be shown that the above 
expression vanishes. Thus the right-hand side of Eq. (36) 
vanishes when Ik 1= Ik '1, and the kernel Q(k ',k) does not 
have a principle-value-type singularity. Because of the 
Holder conditions, the singularity is like II k ' 12 - I k 1211' - 1 • 

Unfortunately, it appears that under the estimates on 
V(k' - k) and T(k ',k) imposed here, Q(k ',k) isnottheker­
nel of a compact operator. One needs larger values of (Jo and 
y. IfQ(k ',k) were compact, then one could conclude that 0 
(being a self-adjoint operator with nonzero eigenValue 1) 
would have finite rank,9 and hence have the form 

Here {f/!,,};; = 1 is an orthonormal set of eigenfunctions of % 
corresponding to the eigenvalue of 1. It would then follow 
from Eqs. (27) and (30) that (~ + %)f/!,. = O. 

For a good part of the remainder of this paper we will be 
interested in the case where ~ + %. is the left inverse of 
~ + % occurring when 0 = 0 or when the null space of 
~ + % is empty. The condition for this to hold follows from 
setting Q(k ',k) = 0 in expression (36), and is given in the 
following lemma. 
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Lemma 3: If T(k ',k} satisfies the condition 

T(k ',k} - T(k,k'} 

= f T(k,p)T(k',p) 

[ 
k,2 k 2 ] 

X k,2_p2_iO - k 2 _p2+iO dp, (37) 

then the null space of ~ + :.t is empty and ~ + :.t is a unitary 
operator. 

VI. INVERSION OF EQ. (8) WHEN ~ + ~ IS UNITARY 

In Sec. IV, necessary conditions on T(k ',k} were devel­
oped to ensure that T( k ' ,k} be a solution of the direct scat­
tering problem associated with Eq. (8), where V(k} is the 
transform of a real-valued quantity with certain smoothness. 
The results are stated in Lemma 1, and subsequent operator 
relations arising from this are given by Eqs. (27) and (30). 
Here we want to examine the inversion ofEq. (8) using the 
operator relations for the case where the T( k ' ,k} satisfies 
Eq. (37) as well as Eq. (17). The inversion problem can be 
stated as follows. 

Problem P: Given that T(k ',k} satisfies the Holder con­
ditions (13), and relations (17) and (37), find a solution 
v(k ',k) of the equation 

(t'X ~) v(k ',p} _ T(k ',k} 
v + k p Ik'i I pi - Ik'i Ik I ' (38) 

such that v (k ' ,k) satisfies the Holder relations ( II) [and, as 
a consequence, the condition v(k',k}/lk'llk leK®K]. 

It immediately follows that since T(k ',k) satisfies Eq. 
(37) the null space of ~ + :.t is empty, hence the solution of 
Eq. (38) is uniquely given by 

v(k ',k} _ (t'X :.t.) T(k ',p} 
Ik'llkl- v+ k p Ik'llpl' 

This can be written in the form 

(39) 

v(k',k} = T(k',k} +k2 fT(:f~~k~~~dP. (4O) 

From the Appendix [see Eq. (1O) and the following materi­
al], it is seen that the second term in Eq. (4O) is Holder 
continuous with index ! and estimating function 
(1 + I k - k ' I) - 1 - 8. , provided that r in the Holder condi­
tions ( 13) is chosen so that 2r + 8o>~ + 0. As a result, from 
these conditions (13) applied to themt term ofEq. (4O), it 
follows that v (k ' ,k) given by Eq. (4O) satisfies Holder esti­
mates (11). 

Next we want to examine expression (39) to see if it 
satisfies the reality and translation invariance condition. 
First note that condition (17) can be written in operator 
form: 

(t'X+i ) T(p+h,k) = (t'X+:.t ) T(p-h,k'). 
v k, p I pllk I v k P I pllk'i 

(41) 

Then operate on Eq. (41) with (~+ ir,)(~ + :.tr} using 
Eq. (27) and (30) (with 0,==0) to yield 
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(~+ :.t.) T(k' + h,p) = (~+ i.) T(k - h,p) . 
k p Ik '11 pi kI p Ik II pi 

(42) 

But from Eq. (39), it is seen that Eq. (42) is equivalent to 

v(k' + h,k) = v(k - h,k '} (43) 

Ik'llkl Ik'llkl 
With h = 0, Eq. (43) implies that v (k ' ,k) satisfies the reality 
conditionv(k ',k) = v(k,k') and as a consequence, the trans­
lation invariance condition v(k' + h,k) = v(k ',k - h). 

It can be shown that if ~'m T(k ',k) satisfies the Holder 
conditions (13) then 

~'mv(k ',k) = Ik I (~+ :.tr)p~'m T(~() . (44) 

Hence we can summarize as follows. 
Theorem: If ~'m T(k ',k) satisfies Holder conditions 

( 13) for every finite m, T( k ' ,k) satisfies conditions ( 17) and 
(37), then the solution to Problem P given by Eq. (40), 
satisfies the reality and translation invariance condition, and 
is analytic in the first variable, with the appropriate deriva­
tives given by Eq. (44). Here r must be restricted by the 
relation 2r + 8o>~ + 0. 

Conditions (17) and (37) constitute a set of sufficient 
conditions on T(k ',k) for the case where ~ +:.t is a unitary 
operator. 

VII. INVERSION WHEN THE NULL SPACE OF ~ + ~ IS 
NOT EMPTY 

For the case when the null space of ~ + :.t is not empty, 
inversion Problem P as stated does not have a unique solu­
tion. However, it can be reformulated to have a unique solu­
tion by adding extra conditions. This formulation is present­
ed as follows. 

Problem P: Given that T(k ' ,k) satisfies the Holder con­
ditions (13) and relation (17), find a solution v(k ',k) ofEq. 
(38) such that it satisfies the Holder conditions ( II) [and as 
a consequence, the Hilbert-space condition v(k ',k}/ 
Ik'llk leK®K] and the combined reality and transla­
tional invariance condition 

v(k' - h,k) = v(k + h,k '), (45) 

for every k,k ' ,heR3
• 

We shall first show that Problem P' has a unique solu­
tion. 

Lemma 4: The solution to Problem P' is unique. 
Proof: If w(k ',k) is the solution of the homogeneous 

equation 

(t'X :.t) w(k',p}_O 
v + k p Ik'llpl - , 

then, on setting k = 0, it is seen that w(k ',0) = ° for all 
k'eR3

• But condition (45) implies that w(k',k) = w(k,k') 
and w(k' - k,O)_w(k,k '). Thus it follows that 
w(k',k}=w(k' - k,O)-O. 

Using operator conditions (27) and (30) the solution to 
Eq. (38) is given by 

v(k' k} = Ik I (t'X + :.t.) T(k ',p} + Ik In v(k ',p) 
, v k P I pi k,p I pi ' 

(46) 
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where the second term on the right-hand side involving the 
operator 0. is unknown. However, the results of Lemma 4 
indicate that it should be uniquely determined when condi­
tion (45) is imposed. 

To investigate this, first rewrite condition (45) in the 
form 

v(k' - h,k) v(k + h,k') 
=-.:..........;..~......:;.. 

Ik'llkl Ik'llkl 
(45') 

for which, for fixed h, both sides belong to the Hilbert space 
K ® K. (It can be shown that this follows from the re­
quired condition that either side belong to K ® K when 
h = 0.) This fact will be used in subsequent analyses. 

Now insert expression (46) into (45') to obtain 

(~ ~*) T(k'-h,p) 0. v(k'-h,p) 
+ kp Ik'llpl + k.p Ik'llpl 

= (~ + f*,) T(k' + hoP) + 0, jj(k + hoP) . 
k p Ikilpi k,p Ikilpi 

(47) 

This will be reduced using the fact that T(k ',k) satisfies Eq. 
(17), or the equivalent form Eq. (41). As in the previous 
section, we operate on Eq. (41) with (~+ fr,)(~ + ~r) 
using Eq. (27) and Eq. (30) with 0.#0, to yield 

( C\c+~*) (C\c-O, ) T(p-h,r) 
'" k r '" k ,p Ipllrl 

= (C\c+i*,) (C\c_o. ) T(p+h,r). (48) 
'" k r '" k,p I pi Irl 

Condition (48) Can now be used to reduce Eq. (47) to the 
form 

0. {V(k' - h,p) _ (~+ i*,) T(P + h,r) } 
k,p Ik'llpl k r Ipllrl 

= Ok' p {jj(k - hoP) _ (~+ ~t)r T(p - h,r) }. 
, Ik II pi I pi Irl (49) 

Equation (49) will now be decomposed into components 
belonging to various subspaces K ® K. Operate on Eq. 
( 49) with the projection operator Ok ,o.k to give 

0. 5, {vcr-h,p) -v(p+h,r)} =0, (50) 
k,p k ,r Irll pi 

Similarly operate on Eq. (49) with the operator 
(~- Ok' )o.k to give 

- v(r- hoP) 
(~- o.k',r)o.k,p Irll pi 

-0. (C\c+i*,) T(p+h,r) =0. (51) 
k,p '" k r I pllrl 

Operating on Eq. (49) with (~- o.k )Ok' will produce an 
equationsimilartoEq. (51). Equation (47) reduces to the 
two equations (50) and (51). 

The unknown portion of expression (46) now can be 
immediately obtained by first multiplying Eq. (51) by I k '1, 
then setting Ik'i = 0, yielding 

.'"' v( - hoP) _ 0. T( p + h,O) (52) 
~k,p Ipi - k,p Ipi 

It will be expressed in a slightly different form, making use of 
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Eq. (17) for the special case when k ' = k = 0, as follows: 

T( - h,O) = T(h,O). (53) 

Hence we have 

'"' v(k ',p) _ 0. T(k' - p,O) 
'4J.k,p Ipi - k.p Ipi 

(54) 

It remains to be shown that Eqs, (50) and (51) are satisfied 
for all k, k ' and h if relation (54) holds. First insert expres­
sion (54) into Eq. (50) to obtain 

0. 5, {T(r - h - p,O) - T( p + h - r,o)} = 0, 
k,p k ,r Irl I pi 

(55) 

It is immediately seen from relation (53) that expression 
(55), and hence Eq. (50), is an identity and so does not yield 
any new condition on T(k ',k). Next substitute expression 
(54) intoEq. (51) to yield 

0. {(C\c+i*,) T(p+h,r) 
k,p '" k r I pi Irl 

_ (C\c-O ' ) T(r-p-h,O)} =0. 
'" k ,r Irllpl 

Using the properties of the operator (~- 0), this can be 
reduced further to 

0. (C\c+i*,) {T(p+h,r) 
k,p '" k r I pllrl 

_ (~ + ir) T(q - p - h,O) } = o. 
q Ipllql 

(56) 

The term in the curly brackets vanishes identically as a con­
sequence ofEq. (17). [In Eq. (17) set k' = 0, replace h by 
P + h and k by r. ] Hence Eq. (51) is also an identity. 

We can now state that the solution of Problem P' is 
given by 

v(k',k) = Ik I(~ + ~t)p T(I:r) 

+Iklo. T(k'-p,O). (57) 
k,p I pi 

The results can be summarized as follows. 
Theorem: If T(k ',k) satisfies the HOlder conditions 

( 13) and relation (17), then the solution to Problem P' is 
given by Eq. (57). Furthermore if ~'mT(k ',k) satisfies the 
Holder conditions (13),then ~'Mv(k ',k) is given by 

~'mv(k ',k) = Ik 1m + ~r)p~'m T(I:r) 

+ Ik 10. ~'m T(k' -p,O) . 
k,p Ipi 

VIII. INVERSE SCATTERING PROBLEM 

Here we formulate and brietly examine the inverse scat­
tering problem, which is to determine V( k) from knowledge 
of on-shell values (Ik'i = Ik I) ofT(k ',k). As was shown in 
the previous sections the necessary and sufficient conditions 
for T(k ',k) to produce a solution v(k ',k) ofEq. (38), which 
satisfies the reality and translation invariance conditions, is 
for T( k ' ,k) to satisfy Eq. (17). This equation thus consti-

V. H. Weston 1778 



                                                                                                                                    

tutes a nonlinear equation for T(k ',k), which, if solved, 
would then yield a solution of the inverse scattering problem 
given by V(k) = T(k,O). Explicitly then, the inverse scat­
tering problem consists of solving the equation 

T(k _ h,k') + k 2 f T(p,k)T(p -h,k')dp 
p2 _ k 2 + iO 

= T(k' +h,k) +k,2 f T(P~2'>!~~~~k)dP , (I) 

forT(k ',k) given on-shell values Ik'i = Ik I ofT(k ',k). The 
index of refraction is then recovered from the relation 

(n2(x) - 1) = f eip-"T( p,O)dp. 

However, system (I) is difficult to solve by iterative 
techniques that require the Frechet derivative and its inverse 
such as Newton's methods. lO,l1 This is due to the various 
dift'erent arguments of T(k ',k) appearing in system (I). A 
form more suitable for such analysis can be obtained by as­
suming dift'erentiability of T( k ' ,k) with respect to the com­
ponents k ;,j = 1,2,3, of the first argument. Such an alterna­
tive form to system (I) is given by 

(l- E) {T(k ',k) + k'2 f T( p,k)T( p,k ')dP } = 0, 
p2 _ k,2 +;0 

(l +E){aT(k',k) (1') 
akj 

+ k,2 f T( p,k') aTe p,k) dP} = 0, 
p2 _ k ,2 + ;0 apJ 

where j = 1,2,3 and E stands for the operator that inter­
changes k and k ' and takes complex conjugate of the result­
ing expression. 

The first equation corresponds to the reality condition 
[given by Eq. (17) with h = 0]. The remaining three equa­
tions correspond to the translational invariance condition. 
They can be derived directly from system (I) through a 
limiting process in which h tends to zero. Or else, they can be 
derived by first expressing the translational invariance con­
dition on v(k ',k) in the differential form 

~v(k',k) +~v(k',k) =0, 
ak; akJ 

T(k',k) +k2fT(k,p)T(k',P)dP 
k 2_p2+;O 

and then modifying it using the reality condition to give 

~v(k',k) +..!...v(k,k') =0. (S8) 
ak; akJ 

Then by using equations (S8) in conjunction with Eq. (8), 
the remaining equations of system (I') can be derived in the 
same manner as Eq. (17) was derived in Lemma 1. 

The remaining nonlinear formulations of the inverse 
scattering problem are obtained under the assumption that 
the null space of ~ + i: is empty, in which case the solution 
v(k ' ,k) to Eq. (S8) is given by Eq. (40). Reality and transla­
tional invariance conditions are then imposed on the solu­
tion v (k ' ,k). Explicitly, the inverse scattering problem is to 
solve the system 

v(k ',k) = v(k - h,k' - h), k,k ',heR?, 

v(k' k) = T(k' k) +k2fT(k,p)T(k',p)dP 
, , k 2 _p2+iO ' 

(II) 

forT(k ',k),givenon-shellvalues Ik'i = Ik I ofT(k',k). The 
index of refraction is then recovered by noting that 
v(k',k) = V(k' -k). 

An equivalent form of system (II) more suitable for use 
in iteration schemes involving Frechet derivatives can be ob­
tained by applying the translational invariance condition on 
v(k ',k) in the form given by Eq. (S8). The resulting system 
is 

(I -E){T(k',k) + k 2 f T(kf)T~k',p)dP} = 0, 
k - p + iO (II') 

(I+E){aT(k',k) +k2f T(k.p) aT(k'.p)dP } =0. 
ak; k 2-r+iO ak; 

Since nonlinear systems have multiple solutions, one might 
want to include, with system (II'), the first equation ofsys­
tem (1'). 

Special nonlinear systems can be formulated that are 
useful when certain on-shell data is available, such as back­
scattered data. For instance, by employing the reality and 
translational invariance conditions in the form 

v(k ',k) = ~v(k' - h,k - h) + ~v(k - h,k' - h), (S9) 

setting h = ~ (k + k '), and inserting expression (40) into 
Eq. (S9), one obtains the following equation: 

1 - 1 f- [1 1] =- [T(K, -K) + T( -K,K)] +-~ T( -K,p)T(K,p) 2 + 2 dp, 
2 2 ~-p +iO ~-p -iO 

(III) 

where K = ! (k' - k). The first term on the right-hand side of system (III) involves backscattered data only. 
System (III) can be solved by the method of successive approximation 10,11 for solutions T(k ' ,k) belonging to the Banach 

space with norm 

IIT(k',k)11 = sup {(IT(k',k)1 + IT(k' + h ',k +h) - T(k',k)I)(1 + Ik' _ k 1)1 +90 (1 + Ik IV} 
k',k Ih'II"+lhll" ' 

Ih'ld,lhld 
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where r is restricted by the relation 2r + ()o > ~ . However, 
such an approach is valid only for very weak scattering6 cor­
responding to the small norm T(k ',k). 

IX. COMMENTS 

The nonlinear systems derived in Sec. VIII need to be 
completely analyzed, to determine, under various circum­
stances, which is the best system to use to get off-shell data 
from on-shell. It also may be possible to derive other qua­
dratic systems that are more practical. The analysis here can 
be extended to other systems. It appears noteworthy that it is 
applicable to Maxwell's equation. 
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APPENDIX: HOLDER CONTINUITY OF CERTAIN 
INTEGRALS 

Let l(k.,k2,k3), k l eH3, be a Holder-continuous func­
tion with indices PI (i = 1,2,3) and estimating function 
M(k.,k2,k3), i.e., 

II (k.,k2,k31 <CM(k.,k2,k3) (AI) 

I/(k. + h.,k2 + h2,k3 + h3) - I (k.,k2,k3) I 
3 

<CM(k.,k2,k3) L Ihj Ipl, (A2) 
j= • 

where Ihll < 1. Let the integral of the estimating function 
over the unit sphere satisfy the inequality 

f M(k.,k2,k3)d03<CN(k.,k2 )(1 + Ik3 1)-·-9, (A3) 

then· it can be shown that 

(A4) 

is a Holder function for k.,k2eH3 and z in the complex plane 
cut along the positive axis. Here F(k.,k2,z) has indices pi, 
P2' and v with PI <P., P2 <P2' and v (the Holder index 
corresponding to z) given by v = min (~, P3)' The estimating 
function for F(k.,k2,z) is 

M.(k.,k2,z) =N(k.,k2)(1 + Izl) -9'12, (AS) 

where ()' <min(1,() can be made as close as possible to () 
when 0 < () < 1. 

For the special case where z = Ik.1 2 ± iO, it is seen that 

IF(k.,k2,lk.12 ± iO) I 

<C.N(k.,k2(1 + Ik.12) - 9'/2. 

To obtain the corresponding estimates for the Holder in­
dices, note that for Ih I < I 
IF(k.,k2,lk. + h 12 ± iO) - F(k.,k2,lkd2

) I 
<CN(k.,k2 ) Ih 2 + 2k.oh IV 

<CoN(k.,k2)( 1 + Ikd )Vlh r 
From this it is seen thatF(k.,k2,lkf I ± iO) is a Holderfunc­
tion for k i eH3

, with indices pi' = min [pi '~'P3]' P2 = pi, 
and the estimating function 
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(A6) 

where ()' <min[l,()]. 
To obtain the estimate (A3) for the various estimating 

functions in this paper we require the following inequalities 
that are found in Faddev·: 

(1 + Ik -pi) -9(1 + Ik' _pl)-9 

<C [(l + Ik _ pi) - 9 

+ (l + Ik' _pl)-9](1 + Ik-k'I)-9, 

valid for 0 < (); and 

f (1 + Ik-pl) -9dOp 

<C(l + Ik I) - 91(1 + !PI> - 9" 

(A7) 

().+()2=()<2. (A8) 

Combining the results of (A6)-(A8), with (). = 0 and 
()2 = (), it can be seen that since V(k' - p)T( p,k) has the 
estimating function 

(1 + Ik' -pi) -.-90 (1 + Ik -pi) -.-90 (1 + Ik I)-Y 

and Holder indices PI > ~, then 

k 2 f V(k' -p)T(p,k)dp 
p2_k 2_iO 

is Holder continuous with the estimating function 

(1 + Ik' -kl)-·-90 (1 + Ikl)'/2- y -9', 

where () , can be made as close as possible to ()o. 
The corresponding Holder estimates for the operator 

given by Eq. (23) are similarly obtained noting that 
T( p,k) I pi; ( p) is Holder continuous with indices >~, and 
estimating function 

(1 + Ip-kl)-·-90 (1 + Ikl)-Y(1 + Ipl>-p· 

Hence using expressions (A6) and (A8), the Holder esti­
mating function is obtained: 

If T(;;~':l~:~dPI<C(1 + Ik 1>.I2- y -9'-P, 

(A9) 

where () , < ()o. 

To obtain the Holder estimates for the function 

Jk 2T(k,p)T(k',p)dP (AlO) 
k 2_p2+iO ' 

it should first be decomposed into two parts: 

f
T(k,p)T(k ',p)dp + f p

2
T(k,p)T(k ',p)dp . (All) 

k 2 _p2+iO 

Noting that p2T(k,p) T(k ' ,p) has the estimating function 

(1 + Ik - pi) - 1 - 90(1 + Ik' _ pi) - 1 - 9. 

(1 + Ipl) -2y +2, 

it can be shown, using (A7) and (A8) with (). = 0 and 
()2 = 1 + ()o, that the first integral in expression (All) is 
Holder continuous with estimating func­
tion (1 + Ik-k'I>-·-90 provided that 2r+()o-2>0. 
Again, using Eqs. (A6)-(A8) with ()2 = 1 + ()Ot it can be 
shown that the second integral in expression (All) is 
Holder continuous with indices >~, and estimating function 
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(1 + !k- k'!) -1-8.(1 +!k !)112-8', 

where 

()'= <Min[I,2r- 2 +()o)' 

Hence it can be seen that expression (AIO) is Holder contin­
uous with estimating function (I + !k - k'!) - 1 - 8. pro­
vided that r is chosen so that 2r + ()o > ~ + O. 
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A discrete model for quantum mechanics is presented. First a discrete phase space S is formed by 
coupling vertices and edges of a graph. The dynamics is developed by introducing paths or 
discrete trajectories in S. An amplitude function is used to compute probabilities of quantum 
events and a discrete Feynman path integral is presented. Many of the results can be formulated in 
terms of transition probabilities and unitary operators on a Hilbert space 12(S). 

I. INTRODUCTION 

Modern quantum theory appears to have reached a 
stage similar to its beginnings when Planck postulated his 
quantum action principle. This principle stated that radi­
ation of a given frequency v could only exist in discrete ener­
gy packets with values nhv, n = 1,2, .... Of course, Planck's 
postulate was necessary to circumvent the ultraviolet catas­
trophe of classical mechanics that predicted an infinite ener­
gy for a radiating body. The situation is similar in the mod­
ern theories of QED, QeD, and their more rigorous 
versions, quantum field theory and gauge field theory. The 
former theories are plagued with infinities and singularities, 
while the latter lack concrete physical models and predictive 
power. Some investigators believe that these theories break 
down at small distances or high energies because they are 
based upon a continuum model of space-time. 1-5 These the­
ories cannot succeed because space-time is not a continuum 
but is discrete. There exists in nature an elementary length 
and an elementary time and all length and time measure­
ments must be integer multiples of these.6-12 

In this paper, we present a discrete model for quantum 
mechanics that might be called quantum graphicdynamics 
(QGD). The first stage of the model is a graph G that repre­
sents discrete locations for a particle. A discrete phase space 
S is formed by coupling vertices and edges of G. Quantum 
mechanics comes into play by postulating an amplitude 
function A : S X S-+C, which gives the amplitude that a parti­
cle can move from one point in S to another in one discrete 
time step. The dynamics is developed by introducing paths 
or discrete trajectories in S. The amplitude of a path is de­
fined as the product of the amplitudes of its one-step parts. 
By summing the amplitudes of various paths and taking the 
modulus squared of this sum, we obtain the quantum prob­
ability of events. This is the discrete analog of the Feynman 
path integral, and results in a quantum random walk. This 
theory not only describes an evolution in discrete space­
time, it may also be useful for models in which a composite 
particle is described by a finite graph, whose vertices repre­
sent elementary particles such as quarks. 

In the following section we develop the general theory of 
QGD. Free and perturbed amplitude functions are intro­
duced. It is shown that amplitude functions give a transition 
probability on a Hilbert space /2(S) over the discrete phase­
space S. Moreover, it is shown that dynamical propagators 
are given by unitary operators on 12(S). A relationship 
between free and perturbed propagators is derived. In Sec. 
III, simplifying assumptions are made and the theory is spe-

cialized to infinite square lattices. In Secs. IV and V, con­
crete examples are discussed in low-dimensional lattices and 
finite graphs, respectively. 

Some other approaches to discrete quantum mechanics, 
which are quite different from that presented here, may be 
found in Refs. 13-17. 

II. GENERAL THEORY 

In this paper a graph is a pair G = (V,E), where Vis an 
arbitrary nonempty set and E is a collection of two element 
subsets of V. The elements of V are called vertices and the 
elements of E are called edges. Suppose that V = {v.:je J} 
and that the edges containing Vj are denoted by ejk , ke K (j). 
If {v"v.}e E we write v,lv. and say that V"V. are adjacent. 
The phase space on G is the set 

S = {(vj,ejk ): jeJ, keK(j)}~ VXE. 

Ifq = (vj,ejk )eS,q' = (vl,elk,)e Sandvjlvl' we write qlq'. 
For neN, an n-path is a sequence of not necessarily distinct 
elements qo, ... ,q n e S with qj lqj+ I ,j = O, ... ,n - 1. We call qo, 
qn the initial and final elements, respectively, of the n-path. 
Denote the set of n-paths with initial element qo and final 
element q by f!lJ n (qo,q). Physically, we think of Vasa set of 
discrete position coordinates for a particle and adjacent ver­
tices correspond to "nearest neighbor" positions. An edge 
containing ve V corresponds to a direction that a particle 
located at v can move and hence represents a momentum 
(the magnitude will be added as a parameter later). If 
e = {v l ,v2}e E, then a particle located at VI can move along e 
to V2 in one time step. An n-pathpe f!lJ n (qo,q) is a possible 
trajectory for a particle moving in a discrete phase space 
from qo to q in n time steps. 

A function A: S X S-+C is an amplitude function if 
A (q,q') = 0 ifqiq' and for allql,q2eSwe have 

2;, A (ql,q')A(q2,q') = IA(q',ql)A(q',q2) = Oq,q" (1) 
q q' 

where A denotes the complex conjugate of A. We then call 
(G,A) an amplitude graph. If 

p = {qo,· .. ,qn}e f!lJ n (qo,q) 

the amplitude of p is defined by 

A(p) =A(qO,ql)A(ql,q2) · .. A(qn-lJqn)' (2) 

For qo,qe S, the n-step transition amplitude of qo to q is 

(3) 
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and by convention Ao(qo,q) = Bqofl . Notice that A1(qo,q) 
= A (qo,q). The n-step transition probability of qo to q is 
Pn (qo,q) = IAn (qo,q) 12. Moreover, for vje Vwe define 

An (qo,vj ) = L {A(p):pe [lJln(qo,q), 

q=(vj,ejk)' keK(j)}, 

Pn (%,Vj ) = IAn (qo,vj ) 12. 

We now give physical interpretations for the definitions 
in the previous paragraph. We interpret A (q,q') as a prob­
ability amplitude that a particle moves from q to q' in one 
time step. The corresponding probability is 
P(q,q') = IA (q,q') 12. The first condition means that if q and 
q' are not nearest neighbors, then a particle cannot move 
from q to q' in one time step. If q 1 = q2' then Eq. (1) gives 

LP(ql,q') = LP(q',ql) = 1. 
q' q' 

The first summation states that a particle beginning at q 1 

must move to a nearest neighbor after one time step, and the 
second summation states that a particle ending at q 1 must 
have begun at a nearest neighbor one time step previously. 
As we shall later show, Eq. (1) is equivalent to the existence 
of a unitary propagator T on a Hilbert space H. Moreover, 
any qe S corresponds to a unit vector B q e H and 
A(q,q') = (TBq,B,j')' 

For ql :j:.q2' Eq. (1) gives 

(Bq"Bq) = (TBq"TBq) = L (TBq"Bq,)(Bq"TBq) =0, 
q' 

so ql and q2 correspond to orthogonal states. We can then 
interpret Eq. (1) as meaning that a particle cannot simulta­
neously be at two different points in S. Equation (2) is a 
Markov property for the amplitude of a trajectory, and Eq. 
(3) states that An (qo,q) is the sum of the amplitude for all n­
step trajectories from qo to q. 

In the following theorem, (a) shows that probability is 
conserved after n time steps and (b) is the discrete Chap­
man-Kolmogorov equation. 

Theorem 1: 

(a) L IAn (qo,q) 12 = 1. 
q 

(b) If m,ne N with m,n, then 

An (qo,q) = LAm (qO,q')An - m (q',q). (4) 
q' 

Proof: It is clear that (4) holds if m = n, so assume that 
m < n. We prove (a) and (b) by induction on n. For n = 1, 
(a) holds by Eq. (1). For n = 2, we have 

= LAI(qo,q')A1(q',q), 
q' 

so (b) holds for n = 2. Moreover, the sum converges abso­
lutely since by Schwarz's inequality 

L IA(qo,q')A(q',q) I 
q' 
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<[~ IA(qo,q'W~ IA(q',qWr/2 
= 1. 

It now follows from (1) that 

L IA2(qo,qW = L LA(qooq')A(q',q) 
q q ( 

x L A (qo,q")A (q" ,q) 
q" 

= L A (qo,q)A(qo,q") 
q',q" 

x LA(q',q)A(q",q) 
q 

= L A (qo,q')A (qo,q")Bq'q" = 1. 
(,q" 

Hence, (a) holds for n = 2. Now suppose that (a) and (b) 
hold for n = 2,3, ... ,r and let n = r + 1, m < n. Then 

= L L {A (p')A (q',q):p'e [lJlr(qo,q')} 
q'lq 

= L A (q',q) L {A (p'):p'e [lJl r(qO,q')} 
q'lq 

= LAI(q',q)Ar(qo,q'), 
q' 

Hence, (b) holds for m = r. Moreover, using the induction 
hypothesis and proceeding as before, the sum converges ab­
solutely and 

L IAr+ 1 (qo,q) 12 = 1. 
q 

Hence, (a) holds for n = r + 1. Finally, ifm <rwe have, by 
the induction hypothesis, 

Ar+1 (qo,q') = LAI(q',q)Ar(qo,q') 
q' 

= LAm (qo,q") LAr- m (q",q')A 1 (q',q) 
q" q' 

= LAm (qo,q" )Ar+ 1- m (q" ,q). 
q" 

Thus, (b) holds for n = r + 1, and the proof is complete by 
induction. 0 

Let /2(S) be the Hilbert space of functions {f S-+C: 
l:q lj(qW < <Xl} with inner product (f,g) = l:f(q)g(q). 
An orthonormal basis for /2 (S) is the set {Bg : qe S}, where 
Bg (q') = Bqq,. Notice thatf(q) = (J,Bq), for every je/2(S), 
qeS.ltfollowsfrom (1) that A (qo, • ),A( • ,qo)e /2(S) and 
from Theorem 1(a) that An (qo,' )e 12 (S). Using the usual 
quantum terminology, we call a unit vector t/JE /2(S) astate 
and if "1'''2 are states, we call ("1>"2) the transition ampli­
tude from "I to "2' Moreover, 1("1'''2)12 is the transition 
probability from "I to "2' Define the linear operators T, U on 
/2(S) by 
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(Tj)(q) = 'LA(q,q')f(q'), 
q' 

(5) 
(Uj)(q) = 'LA(q',q)f(q'). 

q' 

We call T the propagator for A. It is clear that 
A(qo,q) = (T~q,~q). It will follow from the next theorem 
that T~ q is a state and hence A (qo,q) can be interpreted as 
the transition amplitude from this state of ~ qo . 

Theorem 2: The operators T and U are unitary and 
U=T*. 

Proof: To show that Tis unitary, we have forf,ge PeS) 
that 

(Tj,Tg) = 'L (Tj)(q) (Tg)(q) 
q 

= 'LA (q,q')f(q') 'LA(q,q")g(q") 
q.q' q" 

= 'L f(q')g(q") 'LA(q,q')A(q,q") 
q',q" q 

= 'L f(q' )g(q" )~q'q" = (f,g)· 
q',q" 

Similarly, U is unitary. To show that U = T *, for f,gE 12 (S) 
we have 

(j,Tg) = 'Lf(q) Tg(q) 
q 

= 'Lf(q) 'LA(q,q')g(q') 
q q' 

= 'Lg(q) 'LA(q,q')f(g) 
q' q 

= 'Lg(q)(Uj) (q') = (Uf,g)· o 
q' 

We have seen that if A is an amplitude function, then its 
propagator T is unitary. We now show that the converse 
holds. LetA: S XS-C be a function satisfying A (q,q') = 0 
if qiq'. Define the linear operator T on 12 (S) by (5) and 
suppose that Tis unitary. Then 

'L A(ql,q')A (q2,q') 
q' 

= 'L (T~q"~q,>( T~q',~q,> 
q' 

= 'L (T*~q2,~q')(~q"T*~q,> 
q' 

= (T*~q2,T*~q,) = (~q2'~q,) = ~q,q2' 
In a similar way, the other equality in (1) holds so that A is 
an amplitude function. 

For fE 12(S) we define An (flqo) = ~,)'(q)An (qo,q), 
Ao(flqo) = f(qo)' Notice that An ( ·Iqo) is a bounded linear 
functional and that An(~qlqo) =An(qo,q). Moreover, 
A1(flqo) = Tf(qo)' For/: S_R we define the n-step ex­
pectation En (flqo) = ~qf(q)Pn (qo,q) provided that the 
sum converges. 

1784 

Theorem 3: ForfE /2(S), wehaveAn (flqo) = T,,/(qo)' 
Proof: Proceeding by induction on n, the result holds for 
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n = 1. Suppose the result holds for n and apply Theorem 
1 (b) to obtain 

An+ 1 (flqo) = 'Lf(q) 'LAI(qo,q')An (q',q) 
q q' 

= 'LA(qo,q') rf(q)An (q',q) 
q' q 

= 'LA (qO,q')An (flq') 
q' 

= TAn (flqo) = Tn+ 1(qo)' 0 

Corollary 4:An (qo,q) = (~q,un~q)' 
Proof: Applying Theorem 3 gives 

An (qo,q) = An (~q Iqo) = Tn~q (qo) = (Tn~q,~q) 

= (~q,(Tn)*~q) = (~q,un~q,,>. 0 

Let Pq be the one-dimensional projection onto the unit 
vector ~ q E 12 (S). For/: S_R, define the self-adjoint opera­
torBf on/ 2(S) by Bfg(q) =f(q)g(q). ThenBf has the rep­
resentation Bf = ~,)'(q)Pq. The next corollary gives the 
usual quantum probabilities and expectations. 

Corollary 5: 

(a) Pn (qo,q) = (Pq un~qo,un~q)' 

(b) En (flqo) = (Bfun~qo,un~q,,>. 

Proof: 

(a) Pn (qo,q) = I (~q,un~qo W = (Pq un~qo,un~q). 

(b) En (flqo) = rf(q)Pn (qo,q) 

= 'Lf(q)(Pqun~qO,un~q,> 

= ('Lf(q)Pq un~qO,un~qo) 

= (Bfun~qo,un~q,,>. o 
Assume that the amplitude function A corresponds to a 

free evolution of a particle. Now suppose that a function 
V: S-R represents a potential energy. We then define A v: 

S XS-C by A v(q,q') = e-W(q)A(q,q'). Then clearly, A v 

satisfies (1) so A v is a new amplitude function. We regard 
A vas the amplitUde corresponding to a particle evolving 
under the influence of the potential V. Notice that if V is 
identically zero, thenA v reduces to the free amplitude func­
tion A. If p = {qo, ... ,qn}E f!ll n (qo,q), then we easily obtain 
the Feynman-type formula 

A v(p) =A(p)exp[ - i ~t~ V(qj)] . 

We thus obtain the following perturbed n-step transition am­
plitude: 

A :(qo,q) = 'L {A (p)exp [ - <t~ V(qj) l 
p = {qo,· .. ,qn}e f!ll n (qo,q) }. 

Now define the unitary operator e - W by e - i'i( q) 

= e - W(q>j(q). The next corollary shows that the propaga-
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tor for A v is the unitary operator Tv = e - iVT. 
Corollary 6: (a) If Tv is the propagator for A v, then Tv 

= e-iVT. 

(b) A~(qo,q) = (8q,(UeiV)n8q). 

Proof: (a) By definition of the propagator for A v, we 
have. 

(Tvj)(q) = LA v(q,q')j(q') 
q' 

= L e - iV(q)A (q,q')j(q') 
q' 

=e-iV(q) LA(q,q')j(q') = (e-iVTj) (q). 
q' 

(b) Applying Corollary 4 and (a) we have 

A ~(qo,q) = (T';,,8q,8q) = «e- iVT) n8q,8q) 

= (8q,(e- iVT)"n8q) = (8q, (UeiV)n8q). 0 

Let U = S~"'ei()P(d 0) be the spectral representation of 
U. It follows from Corollary 4 that 

An (qo,q) = f1T ein() (8q,P(dO)8q). 

Hence, there exists measures Jlqo,q on [0,21T] such that 

An (qo,q) = f1T ein()Jl
M 

(dO) 

for all nE N, qo,qE S. In the case that U has a complete set of 
eigenvectors t/Jj with corresponding eigenvalues eiAj, Corol­
lary 4 reduces to 

An (qo,q) = (8q,U"8q) 

= 12;. (8q,t/J)t/Jj,un L (8qo ,'h )t/JI) \ , / 

= L ~j (q)t/J/ (qo) (t/Jj,einA't/J/) 
u 

= Le-inAJt/Jj(qo)~j(q). 
j 

III. SQUARE LATTICES 

In this section we apply the general theory of Sec. II to 
the case of a square m-dimensional lattice V = Z m, 

Z = {a, ± 1, ± 2, .. .}. Two vertices V1,V2E Vare defined to be 
adjacent (v 1lv2 ) if one of their components differ by 1 and 
the others are equal. Thus, nearest neighbors in the usual 
sense are adjacent. Denoting the set of edges by E, we obtain 
a graph G = ( V,E). As usual, we denote the phase space on 
G by S. Now any VE V has 2m nearest neighbors and hence 
2m incident edges. We can represent any qE S in the form 

q = (v,s) = (jl, ... ,jm's), 

se{I, ... ,2m}, jrE Z, r = l, ... ,m. 

We can represent an je 12 (S) by Is (jl, ... ,jm ) 
=j(jl, ... ,jm,s). If A: S xS~C is an amplitude function, 

we have 
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'" A ( . . ., ." ), I' ( ., .,) = £.J h, .. ·,jm,s,h,· .. ,jm,s 'Js' jl, .. ·,jm . 

We now make a simplifying assumption, which is rea­
sonable on physical grounds. In the sequel we shall assume 
that A is translation invariant, that is, for all k = 1, ... ,m. 

A(jl,···,jk + r,· .. ,jm,sj; , .. ·,jk + r, ... ,j'",,s') 

= A (jl, ... ,jm,s,j; , ... ,j'",,s') 

= A (jl, ... ,jm,s,j; , ... ,j'""s') 

for any re Z. Let I be the set of m-tuples (jl, ... ,jm ), where 
one ofthejk equals ± 1 and the others are 0. Clearly, the 
cardinality II I = 2m. Then A is determined by the 8m3 

numbers 

A(s,j,r) =A(O, ... ,O,s,jl, ... ,jm,r), 

s,r = 1, ... ,2m, j = (jW .. ,jm)E 1. 

In general, it is quite difficult to compute the value of 
An (qo,q) in a closed form. In this section we shall simplify 
this computation by transforming [2 (S) to a new representa­
tion space. Let 

X = [0,21T]m = {X:X = (X1, ... ,Xm), 

XjE [0,21T], j = 1, ... ,m}. 

Form the HilbertspaceH = L 2(X) ® c2m and denoteafunc­
tion j in this space by Is (x), XE X, se {I , ... ,2m}. The inner 
product in H is taken to be 

1 12
." (j,g) =-- j·gdx 

(21T)m 0 ' 

wherej·g = l:;: Ilsgs' dx = dX 1 ... dxm. For jE zm, XEX, 
define j . x = j1x1 + ... + jmxm' Define the linear transfor­
mationF: [2(S)~Hby 

(Fj)s(x) = L Is (j)eij·x. 
jeZ'" 

It is easy to see that F is unitary and that 

1 i2
." .. (F-1g) (j) = -- g (x)e-"·x dx. 

s (21T)m 0 s 

A A 

Let Tsr = Tsr (x) be the 2m X 2m matrix given by 

Tsr = 2:. A (s,j,r)e-ij·x. 
jeJ 

Now Tsr corresponds to a linear operator Ton H given by 
A 2m A. 

(Tg)s (X) = L Tsrgr(x). 
r= 1 

The next theorem shows that Tis the transform of the propa­
gator TinH. 

Theorem 7: T = FTF -I. 
Proof: It is easy to check that the vectors 

{8seij·x: je zm, SE {1, ... ,2m}}, 

form an orthonormal basis for H. If we show that T and 
FTF -I agree on these vectors, we are finished. For any 
(v,s) = (j,s)e S we have 
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[T8(v,s) ] (v',s') 

= I A [(v',s'),(v",s")]8(v,s) (v",s") 
(v",s") 

=A [(v',s'),(v,s)] 

= I A (s",j",s)8(j_r,s) (v',s'). 
s' J' 

Hence, 

T8(j,s) = I A(s",j",s)8(j_r,s)' 
s',r 

We therefore obtain 

FTp- 18s ev' x 

=FT8(j,s) = I A(s",j",s)e-V··X8s·eV·X 
s· J' 

Corollary 8: If q = (j,s), q' = (j',s'), then 

An (q,q') = (r"8sev,x,8s'ei/'X). 

D 

Instead of finding the nth power (or spectral resolution) 
of the infinite-dimensional operator T, Corollary 8 reduces 
the computation of A" (q ,q') to finding the nth power of the 
2m X 2m matrix Ts,' The next corollary reduces this compu­
tation even further. 

A 

Corollary 9: Suppose that the matrix Ts, has a complete 
set of unit eigenvectors 1/!k (x) with corresponding eigenval­
ues A,k (x), k = 1, ... ,2m. If q = (j,s), q' = (j',s'), we have 

A" (q,q') =-l-I (IT A,'k¢ks1/!ks.ei(j-n,xdx. 
(21T)m k Jo 

Proo/' Let Pk be the one-dimensional projection onto 
1/!k,k = 1, ... ,2m. Applying Corollary 8, we have 

An (q,q') = \+A, 'kPk8seV,x,8s.eif'X) 

= \+ A, 'k (8sev, x . 1/!k )1/!k,8s.eil · x) 

= I (eV·X¢ksA,'k1/!k·8s·eil·x) 
k 

= I_l- tIT ¢ks(x)eV'XA,'k(x) 
k (21T)m Jo 

X1/!ks' (x)e- V··X dx 

= _1_ I (2IT A,k¢ks1/!ks. ei(j-n· x dx. D 
(21T)m k Jo 

We shall apply Corollary 9 in the next section, where we 
consider one-, two-, and three-dimensional lattices. 

We now introduce a notation that will be useful in the 
sequel. Define the following unit vectors in Rm

: 

kl = (l,O,O,.:. .. ,O), ... ,k'll = (0,0, ... ,0,1), km+l 
= - ki" .. ,k2m = - k m. We can then represent the phase 

space as 

S= {(j,k): jeZ m, ke{k1, ... ,k2m }}. 

We now assume that the amplitude function has the follow­
ing simple form: 
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{

a, 

A (j,k), (j + k ',k ') ) = be:, 
ee''!', 

0, 

where a,b,e > 0, B,t,6e[O,21T). 

ifk' = k, 

ifk' = - k, 

ifk'¥: ± k, 
otherwise, 

(6) 

Physical motivations can be given for taking A to have 
this form. First it is clear that A is translation invariant and 
that A (q ,q') = 0 if q lq'. Second, since probabilities are inde­
pendent of a multiplicative phase factor, we can take one of 
the values of A to be positive; hence, we have the value a > O. 
We shall later add conditions on a,b,e,B,t,6 so that A satisfies 
Eq. (1) for an amplitUde function. This amplitude function 
describes the following motion. If a particle is initially at the 
point (j,k), then it moves in one time step in the "forward 
direction" to the point (j + k,k) with amplitude a, in the 
"backward direction" to the point (j - k, - k) with ampli­
tude bei9, and in the "orthogonal directions" to the points 
(j + k ',k ') k ' ¥: ± k, with amplitUde d</>. Since there is no 
physical way to distinguish between the various orthogonal 
directions, they all have the same amplitude. 

We now find conditions on a,b,e,B,t,6 that are necessary 
for A to be an amplitUde function. Let Ro be the permutation 
on the set {k 1, ... ,k2m} defined by Rokj = kj+ 1 (mod 2m). 
For fe /2 (S), the propagator satisfies 

(TJ) (j,k) = LA (j,k),(j',k') )f(j',k') 

= af(j + k,k) + bei'Y(j + R ';k,R ';k) 

+ eei
</> I {f(j + R ~k,R ~k): 

r = 1, ... ,2m - 1, r¥:m}. 

Let Sand R be the linear operators on /2 (S) defined by 
Sf(j,k) =f(j + k,k) and Rf(j,k) =f(j,Rok). It is easy to 
check that the "translation operator" S is unitary and 
S*f(j,k) =f(j - k,k). Moreover, the "rotation operator" 
R is unitary and R * = R 2m - 1. We then have 

T= S [aI + bei9R m + eei
</> I {R ': 

r = 1, ... ,2m - 1, r¥:m}]. 

Theorem 10: The propagator T is unitary if and only if 
the following three equations hold: 

(a) a2 + b 2 + 2(m - 1)e2 = 1; 

(b) ab cos B + (m - 1 )e2 = 0; 

(c) a cost,6 +bcos (B-ifJ) + (m - 2)e =0, 
ifm¥: 1. 

Proof: Let 

L = aI + bei9R m + eei
</> I {R ': r = 1, ... ,2m - 1, r¥:m}, 

so that T= SL. Since Sis unitary, Tis unitaryifandonlyifL 
is unitary. Now 

LL * = (aI + bei9R m + eei
</> L R ') 

,'I'm 
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x(aI + be-laR m + ce- lifJ L R r) 
r#om 

= [a2 + b 2 + 2(m -1)c2]I 

+ 2[ab cos 0 + (m - 1)c2]R m 

+ 2c[a cos,p + b cos (0 -,p) 
+(m-2)c] LRr. 

r#om 

The result now follows. 0 
Corollary 11: If A is an amplitude function, then 

la + bela + 2(m - 1 )ceiifJl2 = 1. 

Proof: Applying (a), (b), and (c) of Theorem 10 we 
obtain 

la + bela + 2(m - 1 )ceiifJl2 

=a2 +b 2+4(m_l)2c2 

+ 2ab cos 0 + 4(m - l)c 

X [a cos,p + b cos (0 -,p)] 

= a2 + b 2 + 4(m _ 1 )2C2 

- 2(m - l)c2 - 4(m - 1)(m - 2)2 

= a2 + b 2 + 2(m - 1 )c2 = 1. o 
We interpret Corollary 11 as follows: Let B be the event 

that the particle is at the nearest neighbor of (j,k) given that 
it was at (j,k) the previous time step. Then B occurs with 
certainty. Notice that this is different from the result given 
by (a), which says the sum of the probabilities that the parti­
cle reaches a nearest neighbor in one time step is unity. More 
generally, we saw in Theorem 1 (a) that 1:q IA" (qo,q) 12 = 1. 
However, whenA is given by (6) we also have the following. 

Corollary 12: If A is an amplitude function, then 
l1:qA" (qo,q) 12 = 1. 

Proof: The expression 1:qA" (qo,q) is the sum ofthe am­
plitudes of all n-paths with initial point qo. It easily follows 
by induction on n that this sum equals [a + bela 
+ 2(m - 1)ceiifJ ]n. The result now follows from Corollary 
11. 0 

Theorem 10 gives a necessary and sufficient condition 
for A to be an amplitude function. However, we then only 
have the three equations (a), (b), and (c) to find the five 
quantities a,b,c,O, and,p. In order to determine these quanti­
ties uniquely, we need two more physically motivated equa­
tions. One of these equations can be obtained as follows. Let 
O<v< 1 be a parameter. If the particle is massive, v would 
correspond to the particle's speed (we set the speed of light 
to unity) or deBroglie frequency, and if the particle is mass­
less (say a photon), v would correspond to the particle's 
frequency. Suppose the particle is initially at the point 
qo = (O,k l )· We assume that after one time step, the parti­
cle's average position is v. Letf S-R be the position ob­
servablef( (j,k») = j. Then 

v = EI (flqo) = 'Lf(q)PI (qo,q) = a2 - b 2. (7) 
q 

There seem to be various choices for a fifth equation 
depending on our particle model. One approach is given in 
the following. 
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Theorem 13: Suppose m>2 andA is an amplitude func­
tion of the form (6). If (7) is satisfied and a has its minimum 
possible value, then a = (1 + v)/2 b = (1 - v)/2, 
c = [(1 - v)2/(m - 1) j1/2/2, 0 = 17", and 

cos,p = [(2 - m)/2v][(1- v2)/(m - 1)j1/2. 

Proof: It follows from Theorem lO(b) that 
(m - 1 )c2<ab. Applying Theorem lO(a) and (7) we obtain 
(1 + v)/2<a. Since a has its minimum possible value, 
a = (1 + v) /2. The result now follows from Theorem 
lO(a), (b), (c), and (7). 0 

Except for the case m = 2, the above result is not very 
satisfactory since the cos ,p equation requires that 
v>(m - 2)/m. Another approach will be given in the next 
section. 

IV. LOW·DIMENSIONAL LATTICES 

In this section we shall consider one-, two-, and three­
dimensional infinite lattices. Besides (a), (b), (c) of 
Theorem 10 and Eq. (7), we shall usually make another 
physically motivated assumption for the amplitude func­
tion. We begin with the one-dimensional case. 

Let V = Zbe the one-dimensional, infinite linear lattice. 
In this case, Eq. (6) becomes 

{

a, ifk' = k, 

A(j,k),(j+k',k'»)= beia, ifk'¥=k, 

0, otherwise, 

(8) 

where a,b>O, Oe [0,217"). In this case only (a) and (b) of 
Theorem 10 are applicable. These and (7) give a2 + b 2 = 1, 
cos 0 = 0, and a2 

- b 2 = v, respectively. Therefore, 
a = [(1 + V)/2j1/2, b = [(1 - v)/2j1/2, and we take 
o = 17"/2 for definiteness. 

We now use the methods developed in Sec. III to find a 
closed expression for A" (qo,q). The matrix elements of 
A(s,j,r) become 

A(s,l,r) = L: ~], A(s, - l,r) = [~ i!]. 
A 

Hence, the matrix Tsr (x) is given by 

T (x) = [ae - ix ibe
ix

] 
sr ibe - ix aeix . 

A 

~otice that Tsr (x) is a unitary matrix. The eigenvalues of 
Tsr(x) are A.I = a cos x + ia(x), A.2 =XI, where 
a(x) = (1- a2 cos2 x)1/2. 

The corresponding unit eigenvectors are 

"'I = NI (beix,a(x) + a sin x), 

"'2 = N2(beix, - a(x) + a sin x), 

where NI.N2 are the normalization factors given by 

N 1-
2 = 2a(x)[a(x) + a sin x], 

N 2-2 = 2a(x)[a(x) - a sin x]. 

Forqo = (O,kl),q = (j,kt> we obtain from Corollary 9 that 

A" (qo,q) = f"" eijxa(x)-I 

X [a(x) cos n,p - ia sin x sin n,p ]dx, 
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where 

,p= tan -I[a(x)/acosx]. 

For qo = (O,kl), q = (j,kz) we obtain 

An (qo,q) = 1211" ei(j+I)Xa(x)cosnrpdx, 

where rp is given above. 
We next consider the two-dimensional, infinite square 

lattice V = Z2. We again assume that A is an amplitude func­
tion of the form (6) and that (7) holds. If we assume the 
condition in Theorem 13, we obtain a = (1 + v) /2, 
b = (1 - v)/2, c = (1 - v) 112/2, e = 'TT, and rp = 'TT/2 or 
3'TT/2. 

There is another approach to obtaining reasonable 
values for A; and this will be important when we get 
to the three-dimensional case. Consider b as a function b ( v ) 
of v. As v increases, more of the particle's motion should 
be in the forward direction so b (v) should be a decreasing 
function with b(1) = O. Also when v = 0, we require that 
the motion should be one-dimensional so b (0) 

= \"1. The simplest function satisfying these condi-
tions is b(v) = (1 - v)/\"1. We then obtain a = [(1 + v2)/ 
2]1/2, c= [v(1-V)/2]1/2, e=cos- I

[ -v/(1 +V2)1/2], 
rp=tan- I [1 +2vz/(1-v)]. 

We now come to the three-dimensional, infinite cubic 
lattice V = Z 3. If we assume the conditions in Theorem 13, 
we obtain a = (1 + v)/2, b = (1 - v)/2, c = (1- V2)1/2/ 

2-!i, e = 'TT, cos rp = - (1 - vz) 1/2/2\"1. As mentioned ear­
lier, this last equation has a solution if and only if v;>1' Thus, 
in this approach small values of v are not admissible. 

We therefore use the second approach employed in the 
two-dimensional case. By that same reasoning, we obtain 
a = [(1 + v2)/2] 1/2, b = (1 - v)/\"1, c = [v(1 - v)] 112/2, 
e = cos -I[ - v/(1 + V2 )1/2]. Using (c), we can now solve 
for ,p. After some algebraic manipulation we obtain 

cos rp = [ - ay + {l( a Z + {l 2 - r) 1/2 ]I (a Z + {l 2), 

(9) 

where a= (1_V+2V2), {l= I-v, y= [v(1-v)(1 
+ v2 )/2] 1/2. We must now convince ourselves that (9) has 
a solution for every O';;;v';;; 1. It is easy to show that 

{l(a2 + fP - r) 112;>ay. 

Hence, (9) has a solution if and only if the following inequal­
ities hold: 

p(a2 + p 2 _ r) 1/2.;;;a2 + p2 + ay, (10) 

r.;;;a2 +{l2. 

Now (10) is easily verified, and (11) is equivalent to 

9v4 
- 9v3 + 13v2 

- 9v + 4;>0. 

Since 

9v4 
- 9v3 + 13v2 

- 9v + 4;> 13v4 
- 9v + 4, 

(11 ) 

(12) 

Eq. (12) holds if the functionf(v) = 13v4 
- 9v + 4 is non­

negative or all 0.;;; v.;;; 1. Now f(O) = 4,/( 1) = 8 andfattains 
a relative minimum at V6 =;,. or Vo = 0.5573. Since 
f(vo) = 0.2383 we are finished. 

We conclude this section by considering infinite trian-
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gular lattices. In the two-dimensional case, the plane is tes­
sellated with equilateral triangles. We define V to be the set 
of all vertices of these triangles. For V,V'E V, we define vIv' if 
v and Vi are vertices of the same triangle. Then each vertex 
has six nearest neighbors. Assume that A has the form (6), 
where a corresponds to the forward direction, be i8 to the 
backward direction, and ceil/> to the other four directions. The 
values of A then reduce to the V = Z 3 case. In three dimen­
sions, R3 is tessellated with regular tetrahedra and each ver­
tex has 12 nearest neighbors. The values of A then reduce to 
the V = Z6 case. 

v. FINITE GRAPHS 

While infinite graphs may be useful for describing the 
motion of a quantum particle in space, finite graphs may be 
important in the description of "elementary" particles them­
selves. For example, in the quark model, mesons are com­
posed of a quark and antiquark while baryons are composed 
of three quarks or three antiquarks. Thus, two- and three­
vertex graphs may give a useful description of the hadrons. 
In other particle models, finite graphs with an even number 
of vertices can describe bosons and finite graphs with an odd 
number of vertices can describe fermions. In this section we 
shall consider only finite graphs of a very simple type. 

Let V= {VI' ... 'VN} be a finite set with !VI =N;>2. We 
define Vj Ivj , if I j - j' I = 1 or N - 1. Denoting the set of 
edges by E, we obtain an N-graph GN = (V,E). For N;>3, 
each vertex has precisely two incident edges. We call {vj ' 

vj+ I },j = 1, ... ,N (j + 1 is taken mod N) theforward edge 
from Vj and {vj,Vj_ I },j = 1, ... ,N (j - 1 is taken mod N) the 
backward edge from Vj . In order to include G2 we assume 
that G2 is not a graph but is actually a multigraph with two 
edges, which we denote V IV2 and V2VI • Then VIV2' V2VI are the 
forward edges from V I ,V2, respectively, and V2V1,V IV2 are the 
backward edges from V I'V2' respectively. The phase space on 
GN can be represented as 

S = {(j,k): jE {1, ... ,N}, k = ± I}, 

where k = 1 ( - 1) corresponds to the forward (backward) 
edges from vj • 

Let A: S X S-C be an amplitude function of the form 
(8) (with j + k I taken mod N). It easily follows that 
a2 + b Z = 1 and e = 'TT/2 or 3'TT/2. For definiteness we take 
e = 'TT/2. If we also assume a2 - b 2 = V [Eq. (7)] then we 
obtain a = [(1 + v)/2] 112, b = [(1 - v)/2] I/z. However, 
this last assumption is not necessary for what we do in the 
sequel. Now /2(S) is a 2N-dimensional Hilbert space with 
orthonormal basis 8(j,k)!j = 1, ... ,N, k = ± 1. The propaga­
tor TN satisfies 

(TNf) (j,k) = af(j + k,k) + ibf(j - k, - k). 

It follows that 

TN 8U ,k) = a8(j_ k,k) + ib8u _ k, _ k)' (13) 

Relative to the basis 8(j,k)' TN can be represented by a 
2N X 2N matrix whose entries are given by ( 13). Suppose the 
unitary operator TN has eigenvalues A I , ... ,A.2N with corre­
sponding normalized eigenvectors tPI, ... ,tP2N' According to 
the discussion following Corollary 6, we have 
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( 14) In functional form we have 

We first consider G2. In this case the matrix T2 becomes 

T = [~ ~ ~ i!] 
2 a ib 0 0 . 

ib a 0 0 
The eigenvalues of T2 are .4 I = a + ib, .42 = a - ib, 
.43 = - .41, and.44 = - .42' The corresponding normalized 
eigenvectors become 

and 

1/l1 = !(1,1,1,1), 

1/l2 = !(1, - 1,1, - 1), 

1/l3 = ~(1,1, - 1, - 1), 

1/l4 = !(1, - 1, - 1,1). 

In functional form we have 1/l1(j,k) =!, 1/l2(j,k) = !k, 
1/l3(j,k) =!( - 1)i+ t, and 1/l4(j,k) =!( - lY+ Ik, with 
j= 1,2,k= ± 1. Ifqo = (j,k)andq= (j',k'),thenapply­
ing (14) gives 

An (qo,q) = H (a + ib)n + (a - ib)nkk' 

+ ( - a - ib) n ( - 1)i+ l 

+ (-a+ib)"( -1)i+l kk'] 

=1[1 + (_1)n+i+l] 

X[(a+ib)n+ (a-ib)"kk']. 

Letting ° = tan -I b I a we obtain 

A = {H 1 + ( - 1)n +i+l]cos nO, 
" (qo,q) (i/2) [1 + (-1)n+i+j']sinnO, 

It follows from (15) that 

ifk=k', 

ifk #k'. 

(15) 

An (qo,j') =A"(qo,(j',I») + An (qo, (j', -1») 

= HI + (_1)"+i+l] ei"9. 

Hence, 

Pn(qo,j') =!Il + (_1)n+i+ l I
2 

= {I, if n + j + l' is even, 
0, if n + j + l' is odd. 

Now suppose that the particle evolves under the influ­
ence of a momentum independent potential V: S-R. Then V 
has the form V((1,k)) = a, V(2,k») =/3,k = ± l.Accord­
ing to Corollary 6, the propagator Tv for the perturbed am­
plitudeA v satisfies Tv = e - iVT2. We can represent e - iVby 
the unitary matrix e - iV = diag (e - ia,e- ia,e - ifJ,e - ifJ). The 
eigenvalues of Tv are .41 = (a + ib)e- i(a+ fJ)/2, 
.42 = (a - ib)e- i(a+ fJ)/2,.43 =.41, and.44 = - .42' The cor­
responding normalized eigenvectors become 

1789 

1/l1 = ~(e - ia12,e - ia12,e - ifJ12,e - ifJ/2 ), 

1/l2 = !(e - ia12, - e - ia12,e - ifJ12, _ e - ifJ/2) , 

1/l3 = !(e - ia12,e - ia12, _ e - ifJ/2, _ e - ifJ/2), 

1/l4 = !(e- ia12, - e- ia12, _ e- ifJ12,e- ifJ /2). 
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1/l1(j,k) =! [e- ia12(1 + (-ly+l) 

+ e-ifJ/2(1 + ( - 1)1)), 

1/l2(j,k) = (k 12) [e- ia/2(1 + ( - 1 Y+ I) 
+ e-ifJ12(1 + ( - 1)1)], 

1/l3(j,k) = [( - lY+ 1/2] [e- ia12(1 + ( - 1)i+ I) 

+ e-ifJ/2(1 + ( - 1)1)), 

1/l4(j,k) = [( -ly+lkI2][e- ia/2(1 + (-ly+l) 

+ e-ifJ12(1 + ( - 1 )1)]. 

The general expression for A : (qo,q) corresponding to (15) 
becomes quite complicated and it is simpler to divide it into 
cases. For the case qo = (1,k),q = (2,k '), upon applying the 
analog of ( 14) we obtain 

A :(qo,q) 

= 1 exp[ - i(n + l)(a +/3)/2] [1- (-1)"] 

X [(a + ib)n + (a - ib)nkk'] 

{

! exp[ - i(n +. l)(a + ~)/2][ 1 - ( - 1)"] 

= X cos n 0, if k = k , 

! exp[ - i(n + l)(a +/3)/2] [1- (-1)"] 

X sin nO, if k #k'. 

In particular, 

and 

A :(qo,2) =A :(qo,(2,1)) +A :(qo,(2, - 1») 

=! exp[ - i(n + l)(a + /3)/2] 

X [1 - ( - 1)n]ein9, 

if n is even, 

if n is odd. 

For the case qo = (1,k), q = (1,k') we obtain 

A :(qo,q) 

{ 

! exp[ - i«n + 2)a + n/3 )/2][ 1 + ( - 1)"] 
X cos nO, if k = k', 

= (i/2) exp[i(n + 2)a + n/3 )/2] [1 + ( - 1 )"] 

X sin nO, if k #k'. 

In particular, 

A :(qo,1) 

=! exp[ - i(n + 2)a + n!3)/2][ 1 + ( - 1)"]e i"9 

and 

pVc 1) =11 1 (_I)nI2= {I, if n is even, 
" qo, 4 + O'f . odd ,In IS • 

We next consider G3• The eigenvalues of the unitary 
6 X 6 matrix T3 are .4 I = a + ib, .42 = a - ib, .43 = .44 
= [-a+i(4-a2)1/2]12, and .45=.46=[-a-i(4 
- a2)1/2]12. The corresponding normalized eigenvectors 

become 

1/l1 = 6- 112 (1,1,1,1,1,1), 

1/l2 = 6- 1/2(,1, - 1,1, - 1,1, - 1), 

1/l3 = (4 - a2) -1/2(.43, - ib, - (.43 + a),O,a,ib), 

Stanley P. Gudder 1789 



                                                                                                                                    

¢4 = (4 - a2) -1/2(0, - (,14 + a), - ib')"4,ib,a), 

¢s = (4 - a2)-1/2(As, - ib, - (As + a),O,a,ib), 

¢6 = (4 - a2)-1/2(0, - (,16 + a), - ib')"6,ib,a). 

We can now compute An (qo,q) using (14). For example, let 
qo = (1.1), q = (j,k). Then 

An (qo,q) =HA~¢I(q) +A~¢2(q)] 

+ [11(4 - a2) l[A ~+ 1¢3(q) +,1 ~+ I¢S(q)] 

=i[A7 +k1n 

+ [1I(4-a2)l[A~+1¢3(q) +l~+I¢s(q)]. 

If k = 1, we have 

An (qo,q) =HA~ +17] 

+ [11(4 - a2) l[ ,13 + 1¢3(q) + 1 ~ + 1¢3(q)] 

=!ReA~ + [2/(4-a2)]ReA~+1¢3(q). 
If k = - 1, we have 

An (qo,q) =HA 7 -17] 

+ [1I(4-a2)](Aj+I¢3(q) +lj+I¢3(q)] 

= (i/3)1mA7 + [2i/(4-a2)]¢3(q)ImA~+I. 
Finally, let us consider G4 • The eigenvalues of the uni­

tary 8 X 8 matrix T4 are A I = a + ib, ,12 = a - ib, 
,13= -AI' ,14= -,12' As=A6=i, and ,17=,18= -i. 
The corresponding normalized eigenvectors become 

¢I = 8- 1/2 (1,1,1,1,1,1,1,1), 

¢2 = 8- 1/2(1, - 1,1, - 1,1, - 1,1, - 1), 

¢3 = 8-1/2(1,1, - 1, - 1,1,1, - 1, - 1), 
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¢4 = 8- 112 (1, - 1, - 1,1,1, - 1, - 1,1), 

¢s = 8- 1/2 (1,I,ia + b, - ia - b, - 1, - 1, 

- ia - b,ia + b), 

¢6 = 2- 1( 1,0,ia, - b, - 1,0, - ia,b), 

¢7 = 8- 1/2 (1,1, - ia - b,ia + b, - 1 - l,ia + b, - ia - b) 

¢g = 2- 1
( 1,0, - ia,b, - 1,0,ia, - b). 

Again, An (qo,q) can be computed using (14). 
Continuing in this fashion, one can see similarities in the 

G n 's for n even (corresponding to bosons) and the G n 's for n 
odd (corresponding to fermions) . 

10. Bohm, The Scientist Speculates, edited by I. J. Good (Basic, New York, 
1962). 

2W. Heinsenberg, The Physical Principles of Quantum Mechanics (Univ. 
Chicago Press, Chicago, 1930). 

3M. Lorente, Int. J. Theor. Phys. 11,213 (1974). 
4B. Russell, The Analysis of Matter (Dover, New York, 1954). 
'D. Shale, Adv. Math. 32,175 (1979). 
60. Atkinson and M. Halpern, J. Math. Phys. 8, 373 (1967). 
7A. Das, 1. Math. Phys. 7, 52 (1966). 
80. Finklestein, Phys. Rev. 09,2219 (1974). 
9G. Gamow, Thirty Years that Shock Physics (Doubleday, New York, 
1966). 

1"5. Gudder, SIAM 1. Appl. Math. 16, 1011 (1968). 
III. Schwinger, Proc. NatI. Acad. Sci. 46, 576 (1960). 
12H. Weyl, Theory of Groups and Quantum Mechanics (Dover, New York, 

1950). 
13S. Gudder and V. Naroditsky, Int. 1. Theor. Phys. 20, 619 (1981). 
14R. lagannathan and F. Santhanarn, Int. 1. Theor. Phys. 20, 755 (1981). 
I'E. Montroll, Commun. Pure Appl. Math. 5, 415 (1952). 
16L. Schulman, Techniques and Applications of Path Integration (Wiley, 

New York, 1981). 
170. Shale, Found. Phys. 12,661 (1982). 

Stanley P. Gudder 1790 



                                                                                                                                    

Transition probability spaces 
Sylvia Pulmannov8 
Mathematical Institute, Slovak Academy of Sciences, 814 73 Bratislava, Czechoslovakia 

(Received 23 September 1985; accepted for publication 28 February 1986) 

Hilbert-space representations of transition probability spaces are studied. The notions of 
superposition and the superposition principle are introduced. It is shown that, provided the 
superposition principle and the postulate of minimal superposition are satisfied, transition 
probability space can be represented by a generalized Hilbert space. 

I. INTRODUCTION 

In an axiomatic approach to quantum mechanics, Miel­
nik introduced the concept of transition probability space. 1 

The set of all pure states of a quantum-mechanical system is 
considered as an abstract space with a geometry determined 
by transition probabilities. In general, the states of a transi­
tion probability space need not be realizable in a Hilbert 
space. Mielnik 1 studied the criteria under which two-dimen­
sional transition probability spaces can be embedded in a 
Hilbert space. Belinfante2 studied the structure of three-di­
mensional transition probability spaces. 

In this paper, we study infinite-dimensional transition 
probability spaces and possibilities of their representations 
in vector spaces. We show that under only one additional 
assumption, the so-called "postulate of minimal superposi­
tion" introduced by Gudder,3 a version of the Piron 
theorem4 for transition probability spaces can be proved. 
CantoniS has shown that a transition probability can be ob­
tained on the basis of only the two first Mackey axioms.6 As a 
consequence, adding only two additional assumptions to 
Mackey'S first two axioms,s a representation of state space in 
a generalized Hilbert space can be found. 

II. BASIC DEFINITIONS AND KNOWN RESULTS 

In this section, we introduce the definitions and results 
of Mielnik 1 and Belinfante.2 

Let Y be a set of pure states. Denote by a, {3,r, ... the 
elements of Y. 

Definition 2. 1: A map T: YXY~(O,l> is called a tran­
sition probability if it satisfies 

and 

(i) T(a,{3) =0 iffT({3,a) =0, 

(ii) T(a, {3) = 1 iff a = {3, 

(iii) calling a, {3 orthogonal if 

T(a,{3) = T({3,a) =0, L T(a,{3) = 1 
/JeR 

for any maximal set R of mutually orthogonal elements of Y 
andanyaeY. 

The sum in Definition 2.1 is thought of as the supremum 
of all finite partial sums. 

A transition probability T is symmetric if 

(iv) T(a,{3) = T({3,a), foralla,{3e Y. 

In our considerations, we shall not suppose the symmetry of 

T. We note that, owing to (i), the orthogonality relation is 
always symmetric. 

A set R of orthogonal elements of Y will be called an 
orthobaseof Y ifitsatisfies l:/JeR T(a, {3) = 1 for all a e Y. 
By (iii), an orthogonal set R is an orthobase iff it is maximal. 

Definition 2.2: A set Y with the mapping T satisfying 
(i)-(iii) of Definition 2.1 is called a transition probability 
space and denoted by (Y ,T). 

For A C Y we denote by A 1 the set of all {3 e Y that are 
orthogonal to all elements of A, i.e., 

A 1 = {{3e Y: T(a,{3) = 0, for all a eA}. 

We shall write A .LB, A,BCY, if T(a,{3) = 0 for any 
a eA and{3eB. If A = {a}, B = {{3}, we write a .L{3. 

Lemma 2.1: LetA,BCY. Then 

(i) A CB implies B lCA 1, 

(ii) A CAll = (A 1)1, 

(iii) AnA 1=0, (AuA 1)1=0. 

Proof: Straightforward. 
Lemma 2.2: For any a e Y, {a}11 = {a}. 
Proof: Let {a, { {3i } i} be an orthobase of Y (it exists by 

Zorn's lemma). Then for any re Y, 

L T( r,{3i) + T(r,a) = 1. 
i 

Ifre {a}11,thenT(r,{3I) = Oforalli,sothat T(r,a) = 1, 
which implies that r = a. 

It is clear that y11 = Y, i.e., 0- = Y. Also, SI CS~ 
implies S{lCS~, SIS2CY, This implies that S~ll is a 
closure operation.7 Let Y(Y) = {scY: S = Sll}. Then 
Y (Y) is a complete atomistic orthocomplemented lattice 
with the singleton sets {a}, a e Y, as the atoms and with the 
lattice operations defined as follows: 

1\ Si = n Sj (the set-theoretical intersection), 

V Sj = (USj)H. 

Definition 2.3: A subset S of Y is called an orthoclosed 
subspace of Y if there is a set of mutually orthogonal ele­
ments A such that S = A 11. 

Lemma 2.3: For any orthogonal set B, 

BH = {aeY: kB T(a,{3) = I}. 
Proof: Leta be such that l:/JeB T(a,{3) = 1 and let robe 

such that T( {3, ro) = 0 for all {3eB (i.e., ro e~). Then 
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there is CcY such that B u C is an orthobase of Y and 
Yo e C. We have 

L T(a, /3) + L T(a,y) = 1, 
peB reC 

which implies T(a, Yo) = 0, i.e., a e JJll . Now let a e Bll . 
Then y 1 B implies y 1 a. Let CC Y be such that B 1 C and 
B u C is an orthobase of Y. Then T(a, y) = 0 for all ye C 
and 

L T(a, /3) + L T(a, y) = 1, 
peB reC 

implies that 

L T(a, /3) = 1. 
peB 

If S = B il, where B is an orthogonal set, we shall call B 
an orthobase of S. 

Lemma 2.4: If S is an orthoclosed subspace, then every 
maximal orthogonal subset of S is an orthobase of S. 

Proof: Let S = Bll, where B is an orthobase of S, and let 
A be any maximal orthogonal subset of S. Then for any 
aeY, 

L T(a, /3) + L T(a, y) = 1, 
peB reC 

where C 1 B is such that B u C is an orthobase of Y. If 
a e s1, then !'r e C T(a, y) = 1. By Lemma 2.3, C is an or­
thobase for S. Now r 1 C implies r e Sll = S. Therefore, 
A u C is an orthobase of Y. If a e S, then ale, i.e., 
!.PeA T(a, /3) = 1. Again by Lemma 2.3, A is an orthobase 
ofS. 

If S is an orthoclosed subspace of Y, then Trestricted to 
S is a transition probability, i.e., (S,T) is a transition prob­
ability space. Let us denote by tJ ( Y) the set of all ortho­
closed subspaces of Y. 

Proposition 2.1: The set tJ (Y) is an atomistic orthomo­
dular poset. 

Proof: From the proof of Lemma 2.4 it follows that 
S e &(Y) implies S1 e tJ(Y). Let SI,s2 e tJ(Y) and let 
SI 1 S2' Let Bland B2 be orthobases of SI and S2' respective­
ly. We have B1 1 B2. Further, 

(B1 uB2)1 =Bt ()B~ =st ()S~ = (SI uS2)1, 

i.e., 

SI V S2 = (SI US2)11 = (B1 uB2)1l, 

hence B 1 U B2 is an orthobase of S 1 V S2' To show orthomo­
dularity, let A 1.A2 e tJ (Y), Al CA2, and A2 () A t = 0. Let 
B1 be an orthobase of AI' As y lAI iff Y lBI, there is no 
r E A2 , r 1 B l' This implies that B 1 is an orthobase of A 2, i.e., 
Al =Az· As by Lemma 2.2, every singleton set {a}, a e Y, 
has an orthobase {a}, and tJ (Y) is atomistic. 

In the preceding propositions we did not need to sup­
pose the symmetry of the transition probability. The follow­
ing proposition is the only one in which we suppose the sym­
metry. 

Proposition 2.2: If (Y,T) is a symmetric transition 
probability space, then every orthobase of Y has the same 
cardinality. 
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Proof: Let Bland B2 be two finite orthobases of Y. 
Owing to the symmetry, 

L L T( /3,a) = L L T(a, /3), 
peB, aeB, aeB, peB, 

which implies that card B2 = card BI. Now let BI and B2 be 
infinite-dimensional orthobases of Y. For any a e BI, 
!.PeB,T(a,/3) = 1, so that the set J(a) = {/3eB2: 
T(a, /3) =j;0} is at most countable. Put A = U aeB J(a). 
Then ACBz, cardBI = cardA<;cardBz. Similarly ~e ob­
tain the opposite inequality, i.e., card B1 = card Bz. 

We have tJ (Y) C Y (Y). The following proposition 
gives us a condition under which every element of Y (Y) 
has an orthobase. 

Proposition 2.3: Let there be, for any set P of & (Y) with 
an at most countable orthobase and any a e Y, /31 P such 
thatP V {/3}CP V {a}. Then Y(Y) = &(Y). 

Proof.' Let S e Y (Y) and let B be a maximal orthogo­
nal subset of S. Our aim is to show that S = Bll. Let 
a e S \Bll . As !.pe B T(a, /3) <; 1, there is an at most count­
able subset BI = { rt> r2, ... }CB such that T(a, r) = 0 for 
any y e B \B I' By the supposition, there is /3 1 B I such that 
S:::>Bt1 V {a}:::>Bt1V {/3}.Asa lB \BI,Bl lB \Bt>and 
/3 e (B1 u {a})l1, we have /31 B \BI. This implies that 
/3 1 B, which contradicts the maximality of B. 

Definition 2.4: A transition probability space is called 
irreducible if it cannot be written as a set union of two or­
thogonal transition probability spaces. 

Every transition probability space can be written as a 
set-theoretical union of mutually orthogonal irreducible 
transition probability spaces. 

III. SUPERPOSITIONS OF STATES AND THE 
SUPERPOSITION PRINCIPLE 

In the sequel, (Y, T) is a transition probability space. 
Definition 3.1: Let PC Y. We say that a E Y is a super­

position of P if T( r, /3) = 0 for all yeP implies 
T(a, /3) = 0 (/3 e Y). 

Denote by P the set of all superpositions of P, i.e., 

P = {a E Y: T( r, /3) = 0 'tIr E p::::?T(a, /3) = O}. 

Lemma 3. 1: All =A foranyACY. 
Proof: Let aeAll, and let T( r,/3) =0 for all reA. 

This implies that/3 eA1, i.e., T(a,/3) = 0, hence a eA. Let 
a eA. If/3 e A1

, then T( /3, r) = 0 for all reA. This implies 
that T(a,/3) = 0, i.e., a eAll. 

Definition 3.2: A subset S of Y is called a (linear) sub­
space if it is closed under the formations of the superposi­
tions of any pair of its elements, i.e., if {a, /3} - C S for any 
a,/3eS. 

If S is not a linear subspace, we denote by A(S) the 
smallest linear subspace containing S. 

Lemma 3.2: For any SI,S2'SCY and a,/3e Y, 

(i) SCA(S)CS, 

(ii) SI CA(S2) implies A(Sl) CA(S2)' 

(iii) A(S) =Sif Se {0,{a},{a,/3}}. 

Proof: Straightforward. 
Properties (i) and (ii) of Lemma 3.2 imply that 
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S-A(S) is a closure operation.7 Let .2"(Y) = {scY: 
S = A (S) }. Then .2" ( Y) is a complete atomistic lattice 
with the singleton sets {a}, a E Y, as the atoms and with the 
lattice operations A Si = n Si (set-theoretical intersec-

I 

tion) and ~Si = A (u Si ). We note that ~ is different from 
V in thesetY(Y). By Lemma 3.2 (i), Y(Y) c.2"(Y). 
We shall call the elements of Y ( Y) closed (linear) sub­
spaces of Y. We have 

orthoclosed subspaces tJ (Y )-atomistic orthomodular poset 

n 

closed subspaces Y (Y )-atomistic complete ortholattice 

n 
subspaces .2" (Y)-atomistic complete lattice. 

In what follows, we shall suppose that the Gudder's pos­
tulate of minimalsuperposition (MSP) holds in (Y, T) (see 
Ref. 3). 

Definition 3.3: Let S = {al,a2, ... ,an} be a finite subset 
of Y. We say that a is a minimal superposition of S if a E S 
and aElQ for any proper subset Q of S. 

Definition 3.4: We say that the postulate of minimal su­
perposition (MSP) holds in (Y, T) if for any finite subset S 
of Y and any minimal superposition a of S the following is 
satisfied: (QI u {a}) -n Q2 #0 for any QIQ2 CS, QI #0, 
Q2#0, such that QI u Q2 = Sand QI n Q2 = 0. 

Proposition 3.1: If MSP holds in (Y,T), then for any 
a, {3, y E Y, mutually different, a E {{3, y}-
iff{3E {a, y}- iffYE {a,f3}-. 

Proof: As a is a minimal superposition of {{3, y}, MSP 
implies that {a, f3}-n { y}#0, i.e., y E {a, f3}-. 

Definition 3.5: A subset S of Y is independent if for any 
a ES, aEl(S - {a})-. 

Proposition 3.2: Any orthogonal set B in Y is indepen­
dent. 

Proof: Let B be an orthogonal set. Let a E (B - {a})­
nB. Then for any {3 E Y, T( {3, y) = 0 for all yEB - {a} 
implies T( {3,a) = O. But then T(a,a) = 0, a contradiction. 

If S = Ii, and A is independent, we say that A is a base of 
S. An orthobase is a special case of a base. It is easy to see that 
a maximal set of independent elements in S, where 
S E Y(Y), is a base of S. 

Proposition 3.3: Let {at>a2,· .. ,an} and {{31' {32, ... ,/3k} 
be two finite bases of S E Y (Y). If MSP holds, then n = k. 

The method of the proof is standard, see, e.g., Gudder.3 

Proposition 3.3 implies that, provided MSP holds, every 
orthobase of Y has the same cardinality even in a nonsym­
metric transition probability space (see Proposition 2.2). 

If S E.7 (Y) has a finite base {at>a2, ... ,an}, we call S 
finite dimensional and put deS) = n. We call deS) the di­
mension of S. By Proposition 3.3, deS) is well defined, pro­
vided MSP holds. 

Now we shall study the properties of the set .2" ( Y) of 
linear subspaces of Y. We shall suppose that MSP holds in 
( Y, T). As the proofs of the following propositions are the 
same as the proofs of corresponding statements in the auth­
or's previous papers8 we omit them. 

Proposition 3.4: For any finite subsetS of Y, A(S) = S. 
We can define independence also in the sense of the op­

eration S~A (S): we say that the set A is independent iff or 
any a EA, aElA(A - {a}). By Proposition 3.4, both defini-
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I 
tions of independence are equivalent for finite subsets of Y. 
This implies that, provided MSP holds, every finite-dimen­
sional element of .2" (Y) belongs to .7 (Y). 

Proposition 3.5: For every SI,sZ E .2"(Y), 

SI +Sz=A(SI uSz) 

={aEY: aE{{3,y}-, {3ES1, YES2}. 

We note that Proposition 3.5 shows us the linear proper­
ties of the elements ofthe set 2" ( Y ) . 

Proposition 3.6: The set 2" (Y) has the following prop­
erties: (i) it is modular; (ii) it has the covering property; 
(iii) if (J) E YandA C Y is such that (J) E A(A), then there is 
a finite subset {{J)I,{J)Z, ... ,{J)n} CA such that 
(J)EA({{J)I, ... ,{J)n}); and (iv) to any SE2"(Y) there is 
Q E 2" (Y) such that S A Q = 0 and S + Q = Y. 

For the definitions of modularity and the covering prop­
erty see, e.g., Maeda and Maeda.9 

Proposition 3. Z· Let S E 2" (Y) be finite dimensional. 
Then d: ~(Q) is a dimension function on [0,S] = {Q 
E 2"(Y): Q~S}, and [0,s] is a complemented modular 
lattice. 

Proposition 3.8: For any S E Y (Y) and any finite-di­
mensional Q E .7 (Y), S V Q = S + Q. 

The concept of a superposition enables us to introduce 
the definition of a superposition principle. 8 

Definition 3.6: We say that a superposition principle 
( SP) holds in the transition probability space (Y, T) iffor 
any a, {3 E Y, a#{3, there is y E {a,/3}, y#a, y#{3. 

IfMSP holds in (Y, T), we can define in the set 2" (Y) 
the notions of points, lines, and planes: an element S in 
2" (Y) is a point if deS) = 1, it is a line if deS) = 2, and it is 
a plane if deS) = 3. If a, pare different points, then {a,{3}­
is a line. This yields a new formulation of a superposition 
principle: a superposition principle holds in (Y, T) iff every 
line in 2" (Y) contains at least three different points. 

To find a connection between the superposition princi­
ple and irreducibility, we introduce the notion of a sector. 

Definition 3. z· We say that the subspace S E .2" (Y) is a 
sector if 

(i) for any a,{3ES, {a,f3}-#{a,{3}, 

(ii) for any a E S, {3 El S, {a, {3}- = {a, {3}. 

In the following proposition we do not need the MSP. 
Proposition 3.9: If Y = S I U Sz, where S1 1 Sz, then for 

every sector S, SCSI or SCSz. 
Proof: Let S be a sector. Suppose that there are a, {3 E S 
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such that a E SI' P e S2' By the definition of a sector, there is 
are {a,p}-, r=/:a, r=/:P. But reSI uS2, Suppose reSI' 
We have T(tS,a) = T(tS,P) = 0 imply T(tS, r) = 0 for 
15 E Y. For 15 e SI we have T(tS, {3) = 0, so that T(tS,a) = 0 
implies T(tS, r) = O. This together with S21 a and S21 y 
gives us {aF c{yF, i.e., { y}l1 C{a}ll and, by Lemma 2.2, 
y = a. Similarly, if y E S2' then r = p, a contradiction. 

Proposition 3.9 gives us the following corollary. 
Corollary 3.1: If the superposition principle holds in 

(Y,T), then Y is irreducible. 
Definition 3.8: We shall say that a, p e Yare perspec­

tive if a = p or if {a, p} - =/: {a, P}. We shall write a -po 
By Definition 3.8, perspectivity is a reflexive and sym­

metric relation. 
Proposition 3.10: If MSP holds, perspectivity is transi­

tive. 
Proof: Supposea-p,p-y, wherea,p, rare mutually 

different. IfrE {a,p}-, thenpe {a, r}-, and we are fin­
ished. Let y Ei {a, p} -. Then a, p, yare independent. Let 
15 1 e {a,p}- - {a,p}, 152 e {,8, r}- - {,8, r}. This im­
plies that ,8E {y,tS2}-, hence 15 1 E {a, y,tS2}-. If 15 1 

e {a, r}-, we are finished. If tSle{a,tSz}-, then 15 1 

E {a,tSz}- n {a, p}- = {a}, i.e., 15 1 = a, a contradiction. 
Similarly, 15 I e { r,tS2} - implies 152 e {tS I' r} - n {,8, r}­
= { y}. Hence, 15 1 is a minimal superposition. By MSP, 
{tSt,tSz}- n {a, y}- =/:0, which implies {a, y}- =/:{a, r}. 

PropOSition 3.11: Let MSP hold. Then any two different 
equivalence classes by the perspectivity are mutually ortho­
gonal orthoclosed subspaces. 

Proof: Let SI and Sz be two different equivalence classes 
by perspectivity. Let a eSt, P E Sz. We have {a, ,8}­
= {a,p}. By Proposition 3.8, {P} +{PF ={P} 
V {PF = Y. If a Ei {P}l, then by Proposition 3.5, 
a E {,8,tS}- for a 15 e {,8F. Then 15 e {a, p}-, tS=/:a, p, a 
contradiction. Therefore St 1 S2' Now Y = U Si' where the 
Si are equivalence classes, Let B be an orthobase of Y. 
Clearly, a E ~ if and only if 

1 = I T(a,p) = I I T(a,p) 
{3e B i (3e BnSi 

= I T(a,p), 
(3eBnSj 

and, by Lemma 2.3, B n ~ is an orthobase for Sj. 
Proposition 3.11 implies that every equivalence class by 

the perspectivity relation is a sector. The following state­
ments are immediate consequences. 

Corollary 3.2: If MSP holds in(Y,T), then Y can be 
written as the set-theoretical union of sectors. 

Corollary 3. 3: IfMSP holds, then (Y, T) is irreducible if 
and only if SP holds. 

Proposition 3.12: IfMSP holds, then every finite-dimen­
sional element of .!£' ( Y) has an orthobase. 

Proof: Let S E .!£' (Y) be finite dimensional. Let B be a 
maximal orthogonal set in S. Put P=BCS. We have 
P + pl = Y, so that for any a e S there are YEP, {3 E pl 
such that aE{y,f3}-. By MSP, {3E{a,r}-CS, i.e., 
{3 E pl /\ S. This shows that S = P V (pl /\ S). As B is a 
maximal orthogonal subset of S, pl /\ S = 0, i.e., S = P. 
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A condition for orthomodularity of Y (Y) is given in 
Proposition 2.3. The following statement gives us another 
necessary and sufficient condition. 

Proposition 3.13: If MSP holds, then Y (Y) is ortho­
modular iff for any SE tJ(Y) and any a E Y, S + {a} 
E tJ(Y). 

Proof: If Y (Y) is orthomodular, then every 
S E Y(Y) has an orthobase, i.e.,S + {a} E tJ (Y). On the 
other hand, let S + {a} E tJ (Y) for any S e tJ (Y) and 
any a e Y. By orthomodularity, S + {a} = S V {a} 
= SV (S V {a}) /\ S!. If a EiS, then (S V {a}) /\ S! 
=/:0, so thatthere isP e (S V {a}) /\ S!. But then the con­
dition of Proposition 2.3 is fulfilled, so that 
tJ(Y) =Y(Y). 

IV. REPRESENTATION THEOREMS 

For the definitions and theorems used in this section see 
Baer,1O Maeda and Maeda,9 Piron,4 and Varadarajan. ll 

A theorem of BaerlO and Proposition 3.6 imply the fol­
lowing statement. 

Theorem 4.1: Let (Y,T) be a transition probability 
space such that SP and MSP hold and let there be at least 
four independent states in Y. Then there exists a division 
ring .)Y and a vector space rover .)Y, such that the lattice 
.!£' (Y) is isomorphic to the lattice.!£' (r) of all linear sub­
spaces of r. 

Theorem 4.1, Propositions 3.4 and 3.8, and Lemma 7.2 
and Theorem 7.40 in Varadarajanll imply the following 
theorem. 

Theorem 4.2: Let (Y,T) be a transition probability 
space such that SP and MSP hold and let there be at least 
four independent states in Y. Then there exists a division 
ring.)Y, a vector space rover.)Y, an involutive antiauto­
morphism {} of .)Y, and a definite symmetric (}-bilinear form 
f on r X r such that the set Y (Y) is isomorphic to the set 
.!£',(r) ofall/-closed subspaces of r. 

Theorem 4.2 yields a version of the Piron theorem for 
transition probability spaces. The ortholattice Y (Y) need 
not be orthomodular; it is orthomodular iff Y (Y) 
=tJ(Y). Owing to the isomorphism of Y(Y) and 
.!£' , ( r), Y ( Y) is orthomodular iff .!£' f ( r) has the Hil­
bertian property: M + Ml = r for any Me.!£', ( r). 

The relation between the transition probability T and 
the bilinear form f is, in general, not clear; we only know 
that they both define the orthocomplementation. If the divi­
sion ring .)Y is the field of complex numbers ~, then, using 
the Gleason theorem, the following result can be obtained. 

Theorem 4.3: Let (Y, T) be a transition probability 
space such that the conditions of Theorem 4.2 are satisifed 
and let the representing space, which exists by Theorem 4.2, 
be a complex inner product space K with the inner product 
( , ). Let q;: Y(Y) __ .!£'( , ) (K) be the isomorphism 
stated by Theorem 4.2. Then T(a,,8) = tr(Ptp{a}Ptp{{3}) for 
every a, {3 E y, where p,{a} ,P tp{ {Jl are projectors corre­
sponding to subspaces q;1.a},q;{ {3} of.!£' ( , ) (K), respec­
tively. In addition, the space K is complete. 

Proof: Every {a, {3} is contained in some four-dimen­
sional subspace S. The interval [0,S] with the relative 
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orthocomplementation is an orthomodular lattice (Proposi­
tion 3.12). For any a E Y and A E deY), put 
Ta (A) = l:.8E B T(a, {3) where B is an orthobase of A. It is 
easy to check that Ta is well defined, and it is a probability 
measure on deY). Fora E S, the restriction ofTa to [0,s] 
is a probability measure on [0,S]. Put Jla (P) 
= Ta (qJ -1 (P»), P E qJ(S), a E S. Then Jla is a probability 

measure on qJ (S). By the Gleason theorem, there is a trace-
class operator D on qJ(S) such that Jla (P) = tr(DP) , 
P E qJ(S). Let U E qJ{a} be the unit vector and Pu be its cor­
responding projector. As Jla (Pu ) = Ta (a) = 1, D = Pu ' 

Let{3ES,qJ{{3} = ~v. Then T(a,{3) = Ta ({3) =Jla (Pv ) 

= tr PuPv = 1 (u,v) 12. By (iii) of Definition 2.1, Parseval's 
equality holds for any maximal orthogonal system, so that 
by Ref. 12, JY is complete. 
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The theory based on the nonlinear Schrodinger equation with an additional term..i (¢1/J) a1/J is 
investigated. The standard quantum mechanical interpretation of 1/J is assumed at the beginning of 
the considerations. It turns out that every finite set of pure states can be transformed with the aid 
of an adequate time sequence of external potentials into a set of pairwise nearly orthogonal states. 
As a consequence, there exist measurements more selective than quantum ones. In particular, it is 
possible to discriminate between various mixtures of states that are equivalent in quantum 
mechanics. The possibility of existence of deterministic measurements is also discussed. 

I. INTRODUCTION 

Quantum mechanics is the only linear theory that at­
tempts to describe physical reality completely. However, the 
rest of physics tells us that linear equations are usually an 
approximation to a more adequate theory. One can doubt 
whether the linearity of quantum dynamics is "the law of 
nature." Yet all the experimental data received up to now 
supply unequivocal arguments for standard theory. On the 
other hand, the problem of its interpretation is still open. It 
may be interesting to check which of the controversial quan­
tum properties depend on the linearity of dynamics. How 
would the world of quantum waves evolving nonlinearly 
look? 

To answer this question we have to make some elemen­
tary assumptions. The systematic developing of physical 
theory in terms of primitive operations on the system, which 
can be (at least in principal) performed by an experimenter, 
has been presented by Lamb, 1 Lubkin,2 and Mielnik. 3,4 Miel­
nik has also noted the usefulness of such an approach to the 
study of nonlinear generalizations of quantum mechanics. 
Its advantage is the small number of assumptions on obser­
vational properties of the system. We have to postulate the 
set of pure states, the law of evolution in all the admissible 
external forces and describe results of elementary measure­
ments as functionals on states. 

Let the set g; of pure states be essentially the same as in 
standard quantum mechanics, i.e., the unit sphere in 
PL 2(R) (projective Hilbert space) or a set dense in it. How­
ever, let the Schrodinger equation be modified by a nonlinear 
term/(#) (see Ref. 5) 

i a1/J = _!f.. a 2
1/J + v1/J + /(#)1/J. (1) 

at 2m aq2 

Here v = v(q,t) are external potentials. As no counterexam­
ples are known in the nonrelativistic theory, we shall assume 
that all the functions v (q,t), for which there exist global solu­
tions of ( 1 ), are allowed as physical potentials. The class of 
these potentials will be denoted by 'Y. In particular, assume 
that 'Y contains potentials changing abruptly with time. 
Then, the evolution transformations S(t,v), t;;;.O, ve'Y form 
a semigroup g; called the mobility semigroup.2.3 The ele­
ments of g; represent all the admissible dynamic transfor­
mations of the system the experimenter can cause with the 
use of external forces. 

The last element we need is a primitive interpretation of 
wave functions. It will be the same as in the linear theory: the 
elementary measurements consist of the determination of 
the probability that a particle is "caught" in the space vol­
ume 11. The mathematical description of this probability is 
given by the functional1/J-f¢(q)EI:. (q)1/J(q)dq, where EI:. 
is the characteristic function of 11. Such measurements, in 
which only two outcomes are possible: "yes" or "no," have 
been called counters (likewise the functionals describing 
probability of "yes" outcomes) .3 We denote the set of 
counters by ~. It can be constructed out of the set ~ of 
elementary counters and the mobility semigroup g;. Ind~d, 
before any elementary measurement F, the system can 
evolve in a certain external field.2.3 If its evolution is SEg;, 
then the corresponding functional will be given by F· S. 
Thus, the elements of ~ e • g; represent admissible counters. 
Moreover, counters can be mixed as well as states.2,6 In what 
follows, ~ is defined as the convex set spanned by ~ e • g;. 
For mathematical and physical reasons the closure of ~ in 
an adequate topology may be taken. 6 

In quantum mechanics the dynamic transformations 
are linear and elementary measurements are described by 
quadratic forms. Therefore only quadratic forms can be in­
terpreted as counters or observables. This yields the peculiar 
properties of quantum systems called "impossibility princi­
ples."3 

( I) There are different mixtures of pure states that can­
not be distinguished by any measurements. The class of such 
mixtures, the mixed state, is described by the density opera­
tor. 

(2) The counters registering every system in the state 1/J 
have to register the systems in the state rp with probability 
1 (1/Jlrp) 12. So called "transition probabilities" are nonzero for 
nonorthogonal vectors. 

The nonlinear modification of evolution (1) changes g; 
and what follows, the sets of counters and observables. These 
changes turn out to be radical. Haag and Banier have studied 
the dynamics with the nonlinear term A • VS, where A is an 
external vector potential and S is the phase of wave function. 
They have proved that every two finite mixtures of pure 
states are distinguishable. 7 Mielnik has considered finite dif­
ference approximations of Eq. (1) for various types of non­
linearities.4 He has shown that both impossibility principles 
cease to hold. This has been confirmed in the case of differen-
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tial equations for two nonlinearities: 1t/l12t/1 and (lnlt/l1 2)t/I 
(see Ref. 8). The striking example is given by (f(-V2t/1)t/l1 
2m1t/l1, which leads to classical mechanics.9 

Below we shall study Eq. (1) with the nonlinear term 

/(#) = A (¢n/I)", A:;fO, a>O, a:;f2. (2) 

At first it is shown that ~ contains all the unitary operators 
and the nonlinear one-parameter semigroup generated by 
the pure nonlinear term in (1) (Sec. II). Then, a transfor­
mation of an arbitrary finite set of pure states into a set of 
pairwise nearly orthogonal states is obtained. This leads to 
the rejection of both impossibility principles (Sec. III). The 
considered nonlinear models are "intrinsically classical,,,4 
contrary to quantum mechanics, and the problem of their 
deterministic interpretation arises. We point out that its 
complete solution depends on the structure of extremal 
points of CC, which has not been found yet (Sec. IV). 

II. MOBILITY 

To prove various identities we put SehrOdinger dynam­
ics into the canonical formalism. 1o

,l1 The nonlinear Sehro­
dinger equation and its conjugate equation can be considered 
as a pair of canonical equations 

iJ1/I 8H { } - q,t = - = t/I(q,t},H, 
at 8t/1(q,t) 
a~ 8H-- q,t = - = {t/I(q,t),H}, 
at 6t/1(q,t) 

(3) 

where functional derivatives are taken of the functional Ha­
miltonian 

H=K+ V+N, 

with 

- 1 f -d
2 

K(t/I,t/I) ="2 i t/I dq2 t/ldq, 

V(~,t/I) = - i f ~t/ldq, 

N(~,t/I) = - if i(#)dq. 

(4) 

(5) 

Here i is a prime function off i' (x) = /(x). The Poisson 
bracket of F(~,t/I) and G(~,t/I) is defined as follows: 
{F,G}(~,t/I) 

=J( 8F 8G _ 8F 8G )dq 
8t/1(q,t) 8t/1(q,t) 8t/1(q,t) 8t/1(q,t) . (

6
) 

Let us denote by S ~ the one-parameter group generated by 
F. We shall prove the following theorem. 

Proposition 1: Let/be given by (2). Then ~ contains 
all the unitary operators and the nonlinear semigroup S';y, 
c>O. 

Proof: Every canonical evolution can be described as a 
series of multiple Poisson brackets 

t/l(t) = t/l + {t/l,tH} + H{t/l,tH},tH} + ".. (7) 

ThusSkisdeterminedbythetermtH.ForH(t) =K + (al 
t) V + N, we obtain tH(t)-+1lV as t-O. This yields that 
"shock transformations" S~, aeR are contained in ~. The 
S~ are unitary operators exp{ - iav}.I,2,8,12,13 
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Similarly, the following identity holds: 

S~S'aS ya =SlI, 

where 

H=H +a{H,V} + (a2/2>{{H,V},V} + .... 
Now, putting in (9) v(q) = f/2 and 

H=Ho+(a2/2)V, Ho=K+N, 

we obtain by (8) S 'a. + aA' where 

A =~f~(~q+q~)t/ldq. 
2 dq dq 

(8) 

(9) 

In the limit t-o with a = bit, S 'a. + aA tends to S ~, beR. 
The dilatation transformations S ~ are unitary operators 
that act on wave functions as follows8,14: 

(10) 

Let us now consider the one-parameter group 
t-S~S'a.S A.-b. Its generator has the following form: 

at/l =e-2b~~t/l-Ue-ba(#)"t/I. (11) 
at 2 af 

Therefore this group is generated by the Hamiltonian 
H(b) = e- 2bK + e-baN. Ifa:;f2, thenHois "dynamically 
decomposable" in two independent generators K and N, 
namely, let t = ce2b

• For a < 2 in the limit b-+ - 00, we ob­
tain S ~, c>O. For a> 2 these transformations can be ob­
tained in the limit b-+ + 00. Similarly, S';y, c>O, can be 
achieved if we let t = ceba and take the limit b-+ + 00 for 
a < 2 and b-+ - 00 for a > 2. At the end, the semigroup 
spanned by Sh c>O, and st, beR, ver, contains all the 
unitary operators. 12,14 • 

III. MEASUREMENTS, TRANSITION PROBABILITIES, 
AND MIXED STATES 

For every two quantum waves t/I and 9', there is a dy­
namic unitary transformation UE~ such that Ut/I = 9' (see 
Ref. 1). Thus, in the linear theory ~ is a transitive on f}J. 

Let us consider now transformations of finite sets of (pure) 
states, i.e., transformations of points in finite Cartesian pro­
ducts of f}J. The set of transformations on f}J transitive on 
X ~ = I f}J is called M-transitive. IS It is easily seen that in the 
linear case ~ is not two-transitive, for scalar products have 
to be conserved. In contrast, the investigations of the parti­
cular nonlinear models have shown that their mobility semi­
groups are two-transitive.4,8 Here we shall prove the follow­
ing proposition. 

Proposition 2: Letfbe given by (2). Then for every E> 0 
and any M different vectors (t/lIt".,t/lM)' M < 00, there is an 
SE~ such that 1 (St/lk ISt/lj) 1 < E if k :;fj. 

Proof: The set of wave functions t/l1t.",t/lM can be embed­
ded into a K-dimensional subspace, K <.M. If M is finite then 
there is an orthonormal base (9'I"",9'K) such that for every 
k the absolute values of coefficients aJk' 1 <. j<.M, in decom­
positions 

K 

t/lj = L ajk9'k 
k=1 

are different numbers. The semigroup ~ contains a unitary 
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operator U that transforms 
(Proposition 1), where 

Kk = {A(q - k + 1)1/2a, 

0, 

for qe(k - l,k), 

for qfi(k - l,k), 
(12) 

whereA is a normalization constant independent of k. Thus, 
K 

U'h = Xj = L ajkKk · 
k=1 

Now, g contains also the nonlinear semigroup S~, c;;'O 
(Proposition 1) 

S~(X)(q) = exp{ - iCA IxI 2a(q)}X(q). (13) 

The scalar products (S~(Xj)IS~(xI») depend on C as fol­
lows: 

K 

(S~ (Xj) IS~ (XI») = L Qjkalk gjlk (c), (14) 
k=1 

where 

gjlk (c) = f IXk IZ(q)exp{ - iCA IA IZa 

x (Iajk IZa 
- la lk 1

2a )(q - k + 1)}dq (15) 

are (up to a mUltiplicative constant) Fourier transforma­
tions of IKk IZ(q). Thereforegjlk (c)-o if C-+oo (Riemann­
Lebesque lemma). In what follows (S ~ (Xj ) IS ~ (X k ) )-0 if 
C-+oo. • 

Proposition 2 shows operational consequences of gener­
alized SchrOdinger dynamics. In particular, it implies the 
possibility of "selective measurements." Namely, for two 
finite and disjoint sets of pure states there is always a counter 
such that positive outcome of the measurement is almost 
certain for every state of the first set and almost impossible 
for every state of the second set. 

Proposition 3: Let/be given by (2), (r/lI, ... ,r/lM) and 
(lpl, ... ,lpL) be finite and disjoint sets of pure states, and 
11 C R. For every E> 0 there is an Seg such that 

(S( r/lm) IEaS( r/lm») > 1 - E, m = 1, ... ,M, 

and 

(S(lpl> IEaS(lpl» < E, 1= 1, ... ,L. 

Proof: The set (r/lI, ... ,r/lM,lpl, ... ,lpL) can be transformed 
by Sleg onto the set of pairwise nearly orthogonal states 
(Proposition 2). Then, let us take a unitary operator U1eg 

(Proposition 1), which transforms (SIr/I" ... ,sIr/lM) almost 
into EaL 2(R) and (Sllpl,,,,,S1lpL) almost into 
(/-Ea)Lz(R). Thus,S= U1S1. • 

As a result, the second impossibility principle of quan­
tum mechanics has to be abandoned. The same thing also 
concerns the first one. Now, two different finite mixtures of 
pure states are always distinguishable, for one can construct 
a counter reacting with various probabilities on systems in 
these two mixed states. 

Proposition 4: Let/be given by (2) and 

M L 

SI = L amt5( r/lm ), Sz = L /31 t5 (lpl) 
m=1 1=1 

be different mixtures of pure states. Then, there is an Fe~ 
such thatF(Sl)#F(sz)' 
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Proof: Let (XI"",XK)' K<.M + L, be the set of different 
pure states that participate in at least one of the mixtures S 1 

and Sz. Then, these mixtures can be described as 
K K 

SI = L fLk t5 (Xk), Sz = L Vk t5 (Xk)' 
k= 1 k= 1 

where some of fLk, Vk may be equal to zero. There is a Xj such 
that fL . # v·, for S 1 and Sz are different mixtures and there is 

J J " 
anFe~ such thatF(Xj)::::: 1 andF(Xk) :::::Olfk #j (ProposI-
tion 3). This yields F(sl) :::::fLj #Vj :::::F(sz). • 

Thus, the set of mixed states is a generalized sim­
plex.3,4.7.8 

IV. PROBLEM OF DETERMINISTIC INTERPRETATION 

The considered models of nonlinear wave mechanics are 
much more "classical" than quantum mechanics. Does this 
mean that they are deterministic? To answer, one has to de­
fine accurately the term "deterministic." It should mean, 
first of all, the existence of measurements fully deterministic 
when applied to the system in a pure state: their outcome 
should be always "yes" or always "no." Moreover, there 
should be sufficiently many deterministic counters: every in­
deterministic counter should be a mixed counter. This 
means that extreme points of ~ should be characteristic 
functionals of subsets of g; and all such functionals should 
be counters. 

Thus, the question of deterministic interpretation re­
quires the complete description of ~. Here we have made a 
first step toward it. The pure counters may turn out deter­
ministic or not. There are three possibilities. 

( 1) Pure counters are not deterministic; the theory is 
intrinsically probabilistic. 

( 2) There are as well deterministic as indeterministic 
pure counters; the theory has a "middle of the way" charac­
ter. 

( 3) All the pure counters are deterministic; the theory is 
intrinsically deterministic. 
The ultimate answer depends on g and the choice of ~ e' 

Maybe the theory with primitive Born interpretation will 
turn out to be of type ( 1) or (2). Even then, one can hope to 
construct such elementary counters, which allow one to en­
large ~ and make the theory deterministic. Thus, to pre­
serve indeterministic properties, one would have to intro­
duce an impossibility principle, e.g., "it is impossible to 
construct any elementary counter that is not described by a 
quadratic form." 

The third possibility seems to be especially interesting 
and promising. 16 Is there a theory that is able to approximate 
quantum mechanics with arbitrary accuracy (A-o) and is 
deterministic? This would mean that quantum mechanics is 
a "singular point" in the set of possible "wave-particle" the­
ories. Or, do peculiar quantum properties have to be attri­
buted to systems with nonlinear laws of evolution? 
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A new kind of path integral is introduced. In ordinary quantum mechanics, it gives the projectors 
on the eigenspaces of the Hamiltonian. For parametrized systems, it represents a direct path 
integral version of the Dirac canonical quantization method by giving the projector on the 
physical space. Its properties on the most simple examples are studied. Applying it to quantum 
cosmology, the Hartle-Hawking wave function of the universe is recalculated. 

I. INTRODUCTION 

In recent years, we have witnessed a renaissance of the 
minisuperspace quantum cosmology. On one hand, this fin­
ite-dimensional model of quantum gravity is not charged 
with divergences, and one can study some principal prob­
lems like the time problem, the Hilbert space problem, the 
positivity problem, etc. (see, e.g., Ref. 1). On the other hand, 
if the model can be considered as some sort of approximation 
to the full theory, then one also obtains observable predic­
tions like the inflationlike start of the universe,2 the evolu­
tion of the observable structures,3 etc. 

Central for this development is the path integral meth­
od. In the present paper, we are going to define and investi­
gate a path integral, which seems to be often used in quan­
tum cosmology (e.g., Ref. 4) under the assumption that it 
gives the transition amplitude, but which, in fact, has a quite 
di1ferent meaning. 

In Sec. II, we introduce this kind of path integral into 
ordinary quantum mechanics and study its properties with 
the help of two well-known simple models: a free nonrelati­
vistic particle in one-dimensional space and a one-dimen­
sional barrier penetration. We will see quite explicitly that 
the value of the path integral is independent of the regime, 
Lorentzian or Euclidean, that one is using to calculate it, and 
even that it, loosely speaking, chooses for itself the most suit­
able regime for the calculation. 

In Sec. III, we show that our kind of path integral repre­
sents, in a quite straightforward way, the Dirac canonical 
quantization method for parametrized systems.5 Thus. it is 
di1ferent from. and. in general. not equivalent to. the kind of 
path integrals that are rooted in the reduction canonical 
quantization method6 (such path integrals are described. 
e.g .• in Ref. 7). We shall also see how our path integral 
differs from that introduced by Teitelboim.8 We study two 
well-known simple examples of parametrized systems: the 
free relativistic particle and the Robertson-Walker cosmolo­
gical model with positive cosmological constant. 

II. ORDINARY QUANTUM MECHANICS 
A. General theory 

"'-
Consider a time-independent Hamiltonian H acting on 

a space of functions of n variables. We shall generally use the 
rigged Hilbert space. consisting of the triple {Ho.H.HI} (see 
Ref. 9), where Ho is the space Y n of rapidly decreasing 
functions on an. HI is the space Y~ of tempered distribu-

tions, and H is the Hilbert space L 2(Rn) with the scalar 
product 

(t/J.rp) = f dnq t/J.(ql, ...• qn)rp(ql •...• qn). 

"'- "'-
Let H be self-adjoint in H and let its spectrum u(H) contain 
a continuous part so that its eigenfunctions lie in HI' 

The motivation for using the rigged Hilbert spaces is 
!!tat our main goal and object of study are the xigenspaces of 
H at some points of the continuous part of u(H). as it is, for 
example, the physical space of the Dirac canonical quantiza­
tion method (see the cosmological section). 

The space Ho can be considered as a linear subspace of 
H, andH as a linear subspace of HI' More precisely, there are 
linear maps io: Ho-H and i l : H-Hl defined by 

ioqJ =class of functions equal to rp almost everywhere 

and 

(ilt/J,rp) = (t/J·,ioqJ), VrpEHo· 

Here, (t/J,rp ) denotes the value of the linear functional t/JE HI 
at the point rpE Ho. 

1.n important property is that ioHo is dense in H and 
that HHoCHo. 

"'-
The eigenfunctions t/J Ep E HI of H are defined by 

(t/JEP,Hrp) = E (t/JEp,rp), VrpE Ho, 

EEU(H). Here p represents all other parameters that can 
label the eigenfunctions of H in the case of degeneration. The 
set {t/JEP} is complete in the sense that every element of Ho 
can be expanded as 

(iloio)rp = ( dp,(E) ( dp,E(P) c(E,P)t/JEp 
JR' JB(E) 

with the property 

(rp·.X) = r dp,(E) i dP,E(P) c(E,p) (t/JEp'X), JR' B(E) 

VXEHO' 
Here, p, (E) and p, E ( p) are suitable Stieltjes measures for 
summation over the spectrum of H and over the E-eigen­
space basis labeled by p. 

The set {t/JEP} is also orthonormal in the sense that the 
coefficients c(E, p) in the above expansion satisfy 

c(E,p) = (np,rp ). 

Let t/Jt be a one-parameter family of linear functionals 
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from HI depending diiferentiably on t. We shall say that .,pt 
satisfies the Schrodinger equation, if 

i!!... (.,pt,(j' ) = <.,pt,iO-1oHOicIP), V({JE Ho· 
dt 

We have, then, the following property: If Uloio) (j't satisfies 
the Schrodinger equation in the above sense, then 

i!.- (icIPt) = H(icIPt ). (1) 
at 

LetKt (q,q') be the kernel of the time development oper­
ator e - itB in H; then, for any (j'E Ho, we define 

(j't (q) = f d nq, Kt (q,q')(j'(q'), 

so that (j't satisfies the SchrOdinger equation (1). We can 
construct K t by means of the eigenfunction expansion: 

(i1oio)(j't = r dp.(E) r dP.E(P) (1/1p'(j' ).,pEpe- itE. JR' JB(E) 

Hence, 

Kt(q,q') = r dp.(E)e-itEKE(q,q'), 
JR' 

where we have defined 

KE(q,q') = r dP.E(P).,pEp(q)1/1p(q'). 
JB(E) 

Roughly s~ng, K E is the projection operator on the ei-
A A 

genspace of H correspo,Qding to the point Eea(H). More 
precisely, for each Eea(H) , there is an operator K E: Ho-+HI 

A 

such that K E Ho is dense in the E-eigenspace of H. 
The inverse relation between K E and K t reads 

KE (q,q') = 2~ (dP.d':») - 1 L. dt eiEtKt (q,q'). 

We express K t as a path integral, 

Kt(q,q') = f dp.[q(1")]e iI [Q(T);tJ, (2) 

where I[q( 1");t] is the value of the action at the path 
q = q( 1"), re[O,t], q(O) = q', q(t) = q. Then, we can write 

KE(q,q') = (dP.(E»)-1 r ~fdP.[q(1")]eiS[Q(T),t;EJ, 
dE JR' 21T 

(3) 
where 

S[q( 1"),t;E] = I[q( 1");t] + Et (4) 

is a "Legendre transform" of the action I. We must have, 
again, the boundary conditions 

q(O) = q', q(t) = q. (5) 

One can consider the right-hand side (rhs) of (3) as a 
new sort of path integral: it is the integral over all paths from 
q' to q without any restriction, whereas the rhs of (2) is an 
integral over all paths from q' to q with a fixed total time t. 
Equation (3) gives the interpretation of such an integral: it is 
the projector on the E-eigenspace of H. 

The integral over t in (3) has to be defined more accu­
rately: K t is singular at t = 0 and the contour of integration 
must go round the singularity through the lower complex t 
plane. 
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As the contour for the t integration is given, it becomes 
unimportant in which regime we calculate K E' We can take 
the formula (3) as it stands and call this "Lorentz-regime 
calculation." Or, we can make the substitution t = - it E for 
t, integrate along the correspondingly rotated tE contour, 
and call this "Euclidean-regime calculation." The expres­
sion that will appear in the exponent of the Euclidean path 
integral is given by 

- SE [q( 1"E ),tE;E] = - IE [q( 1"E );tE] + EtE, 

where lEis the usual Euclidean action. 
Hence, going over from one regime to another means 

nothing but a transformation of the time integration varia­
bles in the path integral (3) and the result remains un­
changed by this. Let us stress this point once more by saying 
that it is not sensible (and even not possible) to continue 
analytically the obtained "propagator" from the Euclidean 
to the Lorentzian time (because it does not depend on time 
at all). We illustrate these properties by two simple exam­
ples. 

B. Free particle In one-dimensional space 

In this case, the formula (3) reduces to 

KE(x,x') = .JE i dt __ l_ei[(x-X')2/4t+EtJ. 
1T c ~41Tit 

We have integrated over all q( 1"), substituting 

Kt(x,x') = (1I~41Tit )ei(X-X,)2/4t 

for Kt (x,x') and 

dp.(E) 1 
---=--

dE 2.JE 

(6) 

for the measure. The mass of the particle is set equal to !. 
Let us calculate the integral in (6) by the method of the 

steepest descent. 10 The corresponding formula reads 

K ( ') - ~.JE 1 /Tfr1T iQ .. + ia.. (7) E x,x = ~ ----- -.-. -e , 
A = I 1T ~41TitA IQA 1 

where the index A numerates the saddle points, t A is the 
value of t at the saddle point A, QA the value of the exponent 

Q= (x-x,)2/4t+Et, 
.. 2 2 .. 

at tA> QA = ca Q/at )It=t .. , and aA = (1T/4)sgn(QA) 
(see Ref. 10). 

We easily find that there are two saddle points t ± ' 

t± = ±lx-x'I12.JE, 

so that 

and 

Q± = ±.JElx-x'l, 

Q± = ±4E3/2/lx-x'l, 

a± = ± 1T/4. 

Setting this into (7), we obtain 

KE(x,x') ~ (1121T)(e- iJE"lx-x'l +'eiJElx-x'I), 

or 

KE (x,x') ~ (lI1T)cos.JE (x - x'). 
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(This is exact!) 
The saddle points lie at the real axis of the Lorentz time 

( or at the imaginary axis of the Euclidean time) and repre­
sent, therefore, Lorentzian classical solutions, the physical 
trajectories that begin at x', end at x, and have energy E: 

q ± (r) = x' ± sgn(x - x')2/E r, 

t= ± Ix-x'1/2/E. 

c. Barrier penetration 

Let V(q) be a potential hill, V(q) >0 for all 
qe( - 00,00), E a number such that E<Maxq V(q), and 
x',x chosen such that x' < x, V(x) = V(x') = E, and 
V(q) >E forqe(x',x). 

Let us calculate in the Euclidean regime. The Euclidean 
action reads 

SE[q(r),t;E) = f dr [~ il + V(q) -E], 

where 

q(O) = x', q(t) = x. 

The saddle points are the extremal paths of S E: 

~SE 
(a) -- = - Mq( r) + V'(q( r») = 0. 

~q(r) 

Multiplying by q( r), we obtain 

(b) 

- !Mq2(r) + V(q(r») = const, Vr, 

aSE 

at 

M l' ~SE aq = - q2(t) + V(q(t») - E + dr ---- (r) 
2 0 ~q(r) at 

+l' dr~ [Mq(r) aq (r)]. 
o ar at 

(8) 

Setting this equal to zero and using the first equation, we 
have 

M ;f(t) + V(q(t») - E + Mq(t) aq (I) 
2 at 

- Mq(O) !!L (0) = 0. 
at 

(9) 

We need a relation between q and aqlat. The extremal path 
q ( r) is also a function of t: 

q = q(t,r) 

with 

q(t,O) = x', q(t,t) = x', 

for all t. Derivation of these equations with respect to t yields 

aq 
- (t,0) =0, 
at 

aq (t t) + aq (t t) = ° 
at' ar' , 

that is, 

1802 

aq (t) = - q(t). 
at 
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( 10) 

(11 ) 

Setting ( 10) and ( 11 ) into (9), and comparing with (8), we 
obtain 

(12) 

This is a classical Euclidean equation for a path q( r) with a 
constant "Euclidean energy" E. The total time t along such a 
path, if it begins at x' and ends at x, is given by 

Lx I M 
t±=± x,dq '\j2[V(q)_E)' 

(13) 

The saddle is, therefore, at the real axis of the Euclidean 
time. As we must go round the singularity at ° through the 
right half-plane, we can deform the contour only to go 
through t+. The value of the exponent there is 

SE [q+ (r),t+;E) 

= f+ dr [~ Mq2+ (r) + V(q+(r») -E] . 

We can substitute for !Mq2+ from (8) and obtain 

SE[q+(r),t+;E] =2 f+ dr[V(q+(r»)-E). 

Now, we change the integration variables from r to q + using 

dq+ = + /2[V(q+) -E) . 
dr '\j M 

The result is 

SE(extreme) = i~ dq~2M[V(q) -E). 

Hence, 

which is the desired formula. 

III. PARAMETRIZED SYSTEMS 
A. General theory 

Consider the action of the form 

/[q(r),a(r);t) = fdr(~K.fBqAqB-av), (14) 

wherea( r) and qt( r), A = 1, ... ,N, are the dynamical varia­
bles, gAB (ql , ... ,qN) is some metric, which is supposed to be 
nondegenerate, g = Det(gAB) ;60, and V(ql , ... ,~) is a po­
tential. The space of variables qI, ... ,~ is usually called "su­
perspace" or "minisuperspace." 

For example, setting qt = xl', gAB = 'TJI'V' f.L = 0,1,2,3, 
and V = - !m2, we have an action ofa free relativistic parti­
cle of mass m ('TJl'v is the metric of Minkowski space-time). 

If we choose ql = R, q2 = ¢>, 

gil = - 3R 141rG, gl2 = 0, g22 = R 3, 

V= (3kl41rG)R - m2R 3¢>2 _ (A/3)R 3, 

we have the Robertson-Walker cosmological model with 
the space-time line element 

d$l- = a2(t)dt 2 - R 2(t) ( 1 ~r + r d02) , 
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coupled minimally to a (spatially constant) Klein-Gordon 
scalar field (,6(t). Here, Gis the Newton constant, k = ± 1,0 
gives the sign of the curvature of space, m is the mass of (,6, 
and A is the cosmological constant. 

The action (14) is typical for relativistic systems. Thus, 
the parametrized action of a nonrelativistic particle in a po­
tential will not be of this form. 

The generalized momenta are defined by 

p. = aL =...!..gAB;t, 
,. ai/ a 

P = aL =0. 
a air. 

The constraint Ko is obtained as follows: 

'l'.P 6I 1 ;.A;.B V 
d'l 0 = - --- = -gABIf If + 

t5a( 7') 2a2 

= !gABpA PB + V, 

and the Hamiltonian H is defined by 

H=i/PA -L =aKo· 

There are essentially two different methods of quantiz­
ing this system canonically: the reduction method and the 
Dirac method (see, e.g., Ref. 6). 

The Dirac method consists of taking L 2(RN) as an aux­
iliary Hilbert space and associating the operators q-t and P A 

with all2N variables qA and P A as if they were independent; 
qA andpA are defined on Y N' the space of rapidly decreasing 
functions as follows: if t/!(q)eY N' then 

q-tt/!(q) = qAt/!(q) , 

PAt/!(q) = -i~t/!(q). art 
One can extend these operators to self-adjoint ones on 
L 2(R"). Next, one rewrites the constraint Ko by substitut­
ing the operators q-t andp A for qA and P A into it, choosing the 

A 

factor ordering such that Ko is (a) symmetric in L 2(R") 

and (b) independent of the choice of coordinates qA. This 
leads to 

Ko = -!( lIM)aAM gAB aB + s~ + 7J + V, 

where S and 7J are arbitrary real constants and ~ is the cur­
vature scalar of gAB' 

Then, the constraint is implemented by the following 
condition on states: 

(15) 

This is the celebrated Wheeler-DeWitt equation. The solu­
tions of ( 15) are called "physical states" and the set of all 
physical states is called "physical (Hilbert) space" Hp. 

A difficulty arises at this stage. For most potentials V, 
A 

zero is a point of the continuous part of the spectrum u(Ko) 
A 

of the self-adjoint extension of Ko. Thus, the solutions of 
(15) do not lie inL 2(RN). IfoneassumesthatHp CL 2(RN) 
and that the scalar product on Hp is identical with that of 
L 2(RN

), one obtains strange paradoxes. ll Hence, we must 
take the rigged Hilbert space, {Ho,H,HI}' where 

Ho= Y N' H=L2(l(lN), HI = Y}." 
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consider Hp as a subspace of HI' and introduce a scalar pro­
duct on Hp ' which is independent of the auxiliary scalar pro­
duct on H (using, say, the conserved current associated with 
the Wheeler-DeWitt equation, see, e.g., Ref. 1). 

Our main point is based on the observation that the con­
straint Ko and the Hamiltonian H are proportional to each 
other, if a is chosen to be a fixed (but arbitrary) function of t. 
We can, therefore, directly represent the Dirac quantization 
method by path integrals as follows. Let us introduce an 
auxiliary dynamics on H by the SchrOdinger equation 

i at/! = a (7') Kot/!. (16) 
a7' 

This is the SchrOdinger equation that corresponds to the ac­
tion (14), if the variable a in (14) is replaced by a fixed 
function a ( 7') of time. Equation (16) can be written 

. atP A 

1-= Kot/!, at 
where 

t= [ dxa(x). 

(17) 

(18) 

The ScbrOdinger equation (17) has a time-independent 
A 

Hamiltonian Ko. The kernel Kp (q,q') of the projection op-
'" erator on the O-eigenspace of Ko is, therefore, given by the 

path integral: 

Kp(q,q') =_l_(dP,(E»)-' r a(t)dtJdP,[q(7')] 
2fT' dE E=O Jc 
X eiI [q(1'l,a(1');t 1. (19) 

Here, for a ( 7') or a (t), a fixed function must be insert­
ed. This means that we allow only this particular class of 
gauge conditions. The result will be independent of the 
choice. 

There are two interesting problems, which are not diffi­
cult to solve, but which will not be dealt with in the present 
paper. 

( 1) Extend the path integral formulation of the Dirac 
method, as given by (19), to a more general class of gauge 
conditions. That is, for example, a gauge condition of the 
form 

X(qA,PA) =0. 

(2) Extend the path integral formulation (19) of the 
Dirac method to parametrized systems with more than one 
parameter. Thus, there will be more constraints, the Hamil­
tonian will be a linear combination of them (like in general 
relativity), and the O-eigenspaces of it will not coincide with 
the physical space any more. 

We illustrate the formula ( 19) by two simple examples. 

B. Free relativistic particle 

In this example, we will see that, by our method, we will 
obtain the projection operator on the whole of the "physical 
space," even if it is highly degenerated. Also, we obtain the 
projection operator on the space of all solutions of the 
Klein-Gordon equation and not just on the positive frequen­
cy solution or other interesting subspaces, as it would be the 
case with other sorts of propagators. 
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We will work in the momentum representation and 
choose a = 1. Thus, the auxiliary dynamics is 

. at/! 1 (,wL" 2).1, lTt="2 " pllp" -m "', 

where t/! = t/!(t,p), p=( PO,PI,P2,P3)' This can be immedi­
I 

ately integrated to give 

where Kt (p,p') is the kernel of e- itHo andp2 = rf"P
Il 

p", 
Then, according to our recipe, 

( dp,(E») Kp(p,p') = lim _l_J"" dtexp[-~(p2-m2)t-.!..-t2]8'(P-P') 
dE E=O E-+O+ 21T - "" 2 2 

This is the desired result. 
We can see from it, moreover, what is the difference 

between our path integral and that introduced by Teitel­
boim: the latter will give the causal propagator for the 
Klein-Gordon field. 8 

It is not clear whether such a "causal propagator" is 
desirable or sensible in general relativity. As Misner very 
clearly explained, 12 there is no necessity for classical trajec­
tories to lie inside the "light cones" of the superspace metric 
gA.B' and so there is no physically relevant time orientation of 
the superspace. The Wheeler-DeWitt equation has twice as 
many solutions as a Schrodinger equation would have, be­
cause the former is real, whereas the latter is complex. All of 
these solutions are physical; the time orientation of a given 
state is determined by the corresponding value of the 
Wheeler-DeWitt conserved current. 

C. The wave function of the universe 

In this section, we are going to illustrate two points. 
( 1) The path integral (19) does not yield, in general, a 

theory equivalent to that obtained from the usual path inte­
gral for parametrized systems. By "usual," we mean the con­
struction described in Ref. 7, which starts by the path inte­
gral expression for the propagator of the reduced theory. It is 
well known that the reduction method and the Dirac method 
of canonical quantization can give different results. One (a 
little artificial) example of it has been described in Ref. 13. 
Here, we shall give another, even simpler, example, which is, 
moreover, directly relevant to quantum cosmology. 

(2) On recalculating the wave function of the universe 
by our method, we show that our path integral coincides, in 
fact, with that which is calculated in Ref. 4. This may seem 
surprising at first sight, because Hartle and Hawking arrived 
at their integral by "generalizing" the path integral formula 
for the transition amplitUde to the parametrized system. The 
end result of this generalization is as follows: one fixes two 
three-geometries, h ij and hij' say, and then integrates over all 
four-geometries that contain h ij and hij as their boundary. 
However, such a path integral does naturally include the 
sum over all proper time distances between h ij and h ij' It will 
not, therefore, give the transition amplitude between h ij, and 
hij but rather the projection operator on the physical space. 

In our calculation, we will consider the system with the 
action ( 14), in which we set tP=:O, k = 1, and A > O. Instead 
of A, we shall use a length parameter a defined by 
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a = ~3/A. 

As it is well known, the corresponding classical theory 
has no dynamics of its own, all degrees of freedom being 
dependent, and all "dynamical" information being con­
tained in the constraint: 

J¥'o = - (R /a2)R 2 - kR + a-2R 3 = O. 

The only classical solution to this constraint is the de Sitter 
space-time of radius a. Still, the Dirac method of quantiza­
tion can be formally applied, giving a nontrivial Hilbert 
space H = L 2 (R I), and a nontrivial Wheeler-De Witt equa­
tion. This will be an ordinary differential equation and the 
corresponding physical space will have finite dimension. We 
shall see, however, a typical way that the Dirac method al­
lows tunneling into regions forbidden by the classical con­
straint. 

Let us set a = 1 and rewrite the formula (19) in a way 
corresponding to our system: 

Kp(R,R')-i dt J dp,[p(1")] 

X eXPC~G L d1"( - pp2 + p - a-2p3 ») , 

where p(O) = R', p(t) = R. Following Hartle and Hawk­
ing,4 we choose R ' = 0, obtaining a function 
t/!(R) =Kp(R,O), which will be interpreted as the wave 
function of the universe. 

Let us calculate t/!(R) by the method of steepest descent. 
The saddle points are the extremal paths of the action. Vari­
ation with respect top ( 1") and t leads to the differential equa­
tion for the extremal paths: 

pp2 +p _ a-2p3 = O. 

This is nothing but the constraint; t must satisfy the condi­
tions 

p(O) = 0, p(t) = R, 

where R is fixed. 
Distinguish two cases: (A) R<,a, and (B) R > a. 
(A) We have four solutions of the form 

. U . • (a1T R) p = a sm - , 1" = lEU, t = IE - + TJa arccos - , 
a 2 a 

O<,u<,a1T12 + TJa arccos(R fa), 
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where E and '1/ are given, in the four different cases, by 

(AI) E = + 1, '1/ = + 1, 

(A2) E = + 1, '1/ = - 1, 

(A3) E = - 1, '1/ = + 1, 

(A4) E = - 1, TJ = - 1, 

and we define the arccos x to satisfy O<arccos x< 1r/2. 
The corresponding metrics are metrics of the Euclidean 

four-sphere with radius a and with an S 3 boundary of radius 
R: 

dr = - ddl - 0
2 sin2(u/0)(dr/( 1 - r) + r d02

). 

(B) We have again four solutions, this time of the form 

. U p=OStn-, 
o 

7 = iEU, 

01r 01r R - <U< - + 0 arccosh-: 
220 

P=OCOSh(: - ;), 

. E01r ( 01r) 7=1-
2
-+'1/ U-T ' 

. E01r R 
t= 1--+ '1/0 arccosh-, 

2 0 

where E and TJ are given by 

(Bl) E = + 1, '1/ = + 1, 

(B2) 

(B3) 

(B4) 

E= 

E= 

E= 

+ 1, 

-1, 

-1, 

'1/= -1, 

'1/= + 1, 

'1/= -1, 

and arccoshx = log(x + R=1). 
The metrics in all four cases are those of the well-known 

Vilenkin solutions. 14 

The extremal values of the action are given by 

(A) iI = - E....!t.- - E'1/....!t.-(~ 1 _ R 2 r 
21rG 21rG 02 

(B) iI = - E....!t.- _ i'1/....!t.- (arccosh R )3 
27rG 27rG 0 

We will approximate the function", by the sum of the 
exponential expressions over the saddle points. 

The kinetic term pji in the action has an unusual sign. 
Thus, we have to lay the integration contour in the t plane 
above the real axis near t = 0, and so the contour can be 
deformed to go only through the saddle points that are above 
the real axis. These are the cases (A 1 ), (A2), (B 1), and 
(B2). Hence, the wave function has the form 
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",(R) _eil(Al) + ei1(A2) 

= 2e- a
'/2nG coshL:r (~1 - ~22 y] , 

for R<a, 
",(R) _eil(Bll + eil(B2) 

=2e-a'/2nGcos [2~G (arccosh ~r], 
for R>o. (20) 

We observe that'" equals - 1 at R = 0 and has a local 
maximum there, then falls off exponentially, tunneling 
through the classically forbidden region, till it reaches the 
value 2e - a'/2nG at R = a, the smallest classically allowed 
radius;d",/dR (0) = O. Then, ",is given by a linear combina­
tion of two semiclassical solutions corresponding to de Sitter 
space-time with two opposite time orientations. The wave 
function (20) can be interpreted as describing a spontaneous 
coming of the universe into being, the probability being 
-e - a'/2nG. Notice, however, that, at least for the present 
model, no explanation of the origin of the universe is really 
required, because the classical solution, the de Sitter space­
time, is eternal in both time directions . 

ACKNOWLEDGMENT 

This work was supported in part by Schweizerischer 
Nationalfonds. 

'K. Kuchar, in Quantum Gravity. 2nd Oxford Symposium, edited by C. J. 
Isham, R. Penrose, and D. W. Sciama (Clarendon, Oxford, 1981). 

2S. W. Hawking, Nuc!. Phys. B 239,257 (1984). 
3J. J. Halliwell and S. W. Hawking, Phys. Rev. D 31, 1777 (1985). 
4J. B. Hartle and S. W. Hawking, Phys. Rev. D 28, 2960 (1983). 
~P. C. M. Dirac, Lectures on Quantum Mechanics (Yeshiva U.P., New 
York,1964). 

6C. J. Isham, in Quantum Gravity. An Oxford Symposium, edited by C. J. 
Isham, R. Penrose, and D. W. Sciama (Clarendon, Oxford, 1975). 

'L. D. Faddeev, in Methods in Field Theory, Les Houches, edited by R. 
Ballian and J. Zinn-Justin (North-Holland, Amsterdam, 1976); J. B. Har­
tle and K. Kuchar, J. Math. Phys. 25, 57 (1983). 

BC. Teitelboim, Phys. Rev. D 25, 3159 ( 1982); M. Henneaux and C. Teitel­
boim, Ann. Phys. 143, 127 (1982). 

9J. M. Gel'fand and N. Ya. Vilenkin, Generalized Function IV (Academic, 
NewYork,1964). 

'OJ!. Jeffreys and B. S. Jeffreys, Methods of Mathematical Physics (Universi­
ty, Cambridge, 1972). 

lip. G. Bergmann and A. Komar, in General Relativity and Gravitation. 
One Hundred Years after the Birth of Albert Einstein, edited by A. Held 
(Plenum, New York, 1980). 

12C. W. Misner, in Magic without Magic. John Archibald Wheeler. A Collec­
tion of Essays in Honor of His Sixtieth Birthday, edited by J. R. Kauder 
(Freeman, San Francisco, 1972). 

I3A. Ashtekar and G. T. Horowitz, Phys. Rev. D 26,3342 (1982). 
'4A. Vilenkin, Phys. Lett. B 117, 25 (1982); Phys. Rev. D 27,2848 (1983). 

P. Hajicek 1805 



                                                                                                                                    

On the summation of the Birkhoff-Gustavson normal form of an anharmonic 
oscillator 

M. K. Ali and W. Robert Wood 
Department oj Physics, The University oj Lethbridge, Lethbridge, Alberta, Tl K 3M4, Canada 

J. S. Devitt 
DepartmentoJMathematics, The UniversityoJSaskatchewan, Saskatoon, Saskatchewan, S7N OWO, Canada 

(Received 5 August 1985; accepted for publication 6 March 1986) 

The classical Birkhoff-Gustavson normal form (BGNF) has played an important role in finding 
approximate constants of motion, and semiclassical energies. In this paper, this role is examined 
in detail for the well-known anharmonic oscillator H = 1!2(p2 + x 2 + gx4

). It is shown that, 
with appropriate restrictions, this is the only perturbation series that preserves the period of this 
system. This series has a nonzero radius of convergence in contrast to the zero radius of 
convergence of its quantum analog, the Rayleigh-Schrodinger perturbation series. In addition, 
the BGNF is generated to high order, and a technique is given based on Pade approximants for 
summing this series. The summation of this series makes possible an accurate comparison of torus 
quantization energies with the known quantum energies over the entire range of quantum 
numbers. This example also demonstrates that divergence of the BG NF series of a Hamiltonian is 
not sufficient to refute its global integrability. 

I. INTRODUCTION 

The classical Birkhoff-Gustavson normal form 1,2 
(BGNF) has received considerable attention2-5 in finding 
approximate constants of motion and semiclassical energies 
of nonlinear Hamiltonian systems. In our recent work6 on 
the quantum normal form, we have shown that there exists 
an algebraic connection between the BGNF and the Ray­
leigh-Schrooinger perturbation (RSP) theory. The role 
played by the BGNF in classical mechanics is equivalent to 
that of the RSP in quantum mechanics. In addition, quanti­
zation of the BGNF by techniques such as torus and Weyl 
quantizations3,6 are straightforward. Therefore, the BGNF, 
which is derivable by the technique of Lie transforms,7-1O is 
of special importance among all possible perturbation meth­
ods of classical mechanics and it is worthwhile to look at the 
BGNF in detail for some model system. 

Until now, applications of the BGNF have been restrict­
ed to relatively low order approximations.2-6 In their work 
on vague tori, Shirts and Reinhardt4 generated, through the 
introduction of a simplification, the first ten terms in the 
BGNF series for the two-dimensional Henon-Heiles and 
Toda systems and summed the "direct" ten-term series by 
employing the Pade approximant technique. (We are grate­
ful to the referee for drawing our attention to this summation 
of a BGNF by the Pade approximant approach.) However, 
in their work on the summation, they found that additional 
terms would be "highly desirable." Also, in applying the 
BGNF approach, the convergence properties of the series in 
question have not been sufficiently emphasized. In practice, 
the BGNF series may diverge, as illustrated later on, even for 
simple integrable II systems. 

The objectives of this work are ( 1) to generate and sum 
the BGNF series of a model anharmonic oscillator, (2) to 
present the solution in a form suitable for addressing an old 
and fundamental question of how to quantize a classic~l sys­
tem in which the coordinates and momenta do not appear in 

a simple manner, (3) to provide additional evidence empha­
sizing the special importance ofthe classical BGNF pertur­
bation method, and (4) to compare the anharmonic oscilla­
tor energies obtained by quantum calculations and by torus 
quantization of the BGNF. 

Algebraic and exact computations have played a crucial 
role throughout all phases of this investigation. All compu­
tation, numerical or otherwise, reported in this paper has 
been carried out using the MAPLE 12 symbolic algebra system. 

II. THE BGNF OF AN ANHARMONIC OSCILLATOR 

The Hamiltonian of the anharmonic oscillator of our 
present work is obtained by substituting b = 0 in Eqs. (24)­
(27) of our earlier work. 6 That is 

H =Ho +HI +H2/2, Ho = ~ (p2 +x2), HI = bx\ 
(I) 

This Hamiltonian has been extensively studied as a math­
ematical and physical model13-47 in classical and quantum 
theories. The exact solutionl4-16 of Newton's equation of 
motion for H is known in terms of Jacobi elliptic functions, 
and the period and action of this classical problem have been 
reported in terms of generalized hypergeometric functions. 13 

Some approximate solutions l6,17 of Newton's equation are 
also available in the literature. However, none of the current­
ly existing solutions are in a convenient form for studying the 
fundamental quantization problem. The BGNF approach 
not only provides the solution of the classical equation of 
motion but also yields the solution in a form that is suitable 
for applying known quantization procedures. 

The work l9-47 on the solutions of the Schrodinger equa­
tion for the anharmonic oscillator is more extensive than on 
its classical counterpart. While detailed analy­
sis31.37.38,43,45,46 of the convergence of the RSP series for the 
problem is available in the literature, such is not the case for 
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the BGNF, the classical analog of the RSP. In our present 
work we fill this gap. 

In the BGNF approach, the Hamiltonian H(x,p) is 
transformed2 to the normal form K(S,1J) by a canonical 
transformation of the phase space variables (x,p) to the var­
iables (s,1J). The Hamiltonian H(x,p) is assumed to have 
the form 

MH 
H(x,p) = L _n , 

n=O n! 

where the H n (x,p) are homogeneous polynomials of degree 
n + 2 in x and p and M;;;.O. The normal form K (s, "I) is 

00 K 
K= L _n, 

n=O n! 
(2) 

where the Kn are homogeneous polynomials of order n + 2 
in S, "I and the Poisson brackets {Ko,K",} = 0 for all m. The 
required canonical transformation is carried out using the 
method of Lie transforms for which the details are given in 
the earlier paper.6 The first few terms ofthe series, Eq. (2), 

I 

obtained using Lie transforms in this manner are 

Ko=Ho, 

KI = HI + {HO'wl} , 

K2 = H2 + 2{H1,WI} + {HO'w2} + ({Ho,wl},wd ' 

where {A,B} represents the Poisson bracket of A and Band 
the generating function w(s,1J) is given by 

(
I: ) _ ~ wn + l (s,1J) 

W :,,"1 - ,£.. • 
n=O n! 

Here the Wn + I (s,1J) are homogeneous polynomials of de­
gree n + 3 in S and "I. The Kn and Wn + I are determined from 
the equations of the Lie transforms and the condition 
{Ko,Km } = o for all m. We have set b = 0 (i.e., HI = 0) and 
g;;;.O. 

The advantage of using the Lie transform is that a con­
nection6 between the BGNF and RSP follows when the Pois­
son brackets of the BGNF are replaced by the corresponding 
commutators. A partial result generated by this method for 
the series in Eq. (2) is K = UKo, where 

U = 1 3y _ 17y2 + 375y3 _ 10 689y4 87549y _ 3132399y6 + 238225 977y7 _ 18945 961925y8 
+ 4 16 128 1024 + 2048 16384 262 144 4194304 

194904 116 847y9 

+ 8388608 
15671 733036451 359yl2 

4294967296 

87 535 900 033 269 525y l3 
+ 4294 967 296 

7925 536 921 177 219 335y14 1451 374 598 407 735 283 589y15 
68719476736 + 2199023255552 

268400 255715098864 816 085y16 3129005835033377759527 767yl7 
70368744 177 664 + 140 737 488 355 328 

147 029 517:2~8:9~4~~6~!3!2~18 725y18 + 1739 007 ~~~:~~::~:!:;~~;04 925y19 

331111 61~2~:70::42~:/::/:~6665 719y20 + 1981 052 ~~ ~~ ~:! ~~~ !~~ :~~ 382 175y21 (3) 

and 

y = gKo, Ko = ~ (s 2 + "12) . (4) 

The BGNF series, Eq. (3), for the integrable anharmonic 
oscillator of Eq. (1) has a positive radius of convergence Yo' 
as compared to the zero radius of convergence22,37,41,45 of its 
quantum analog the RSP series. The questions of determina­
tion of Yo and summation of the series for K will be discussed 
below. The divergence fory;;;.yo of the series in Eq. (3), even 
though the associated anharmonic oscillator is integrable, 
demonstrates that the divergence of the BGNF series of a 
Hamiltonian is not sufficient for ascertaining its global non­
integrability. 

In terms of the BGNF, the dynamics of the anharmonic 
oscillator is essentially reduced to that of a harmonic oscilla­
tor. This can be seen by considering the action 

I=Ko (5) 

and Hamilton's canonical equations of motion 
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ds = CiJ'Y1 
dt " , 

d1J (6) 
d('= -CiJS, 

where 

dK ti· K (7) CiJ = -- = a constant or a gtven 0 • 
dKo 

The above equations of motion are the same as those of a 
harmonic oscillator with the Hamiltonian 

K = (CiJ/2)(S2 + "12) . (8) 

The main difference between the equations of motion of 
the anharmonic oscillator, Eqs. (6), and those of the har­
monic oscillator with Hamiltonian K is that for the anhar­
monic oscillator the CiJ depends on the action I and hence on 
K, while for the harmonic oscillator the CiJ is independent of S 
and "I. However, for every given I the CiJ is fixed and the time 
evolution of the coordinate and momentum of the anhar­
monic oscillator is that of a harmonic oscillator with the 
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corresponding cu. This simple relationship for the dynamics 
of the anharmonic oscillator combined with the summation 
of the BGNF series will be utilized in a following paper ad­
dressing the quantization question. 

III. THE SUMMATION OF THE BGNF SERIES 

As mentioned earlier, the normal form series, Eq. (3), 
diverges when y:;;'Yo. We now discuss how to determine Yo 
and find expressions for K that are valid for all y:;;. O. Summa­
tion techniques such as Pade48 and Borel-Pade49

•
50 suggest 

themselves since these techniques have been successfully ap­
plied by earlier workers37

.47 to the analogous RSP series of 
the anharmonic oscillator. 

A. The Pade and Borel-Pade summation of the BGNF 

Before applying these summation techniques, it is in­
structive to look at the asymptotic behavior of K as y_ 00 • 

From a first-order WKBJ calculation,51 which is valid for 
large quantum numbers n, and considering the validity of 
the semiclassical torus quantization, Ko = n + ~, one finds 
the limiting values (see also Sec. III B) 

lim U = CKOI/3 and lim K = CK04/3 , (9) 

where 

C = a4 /3g l/3, a = 3r(j)2I1rl/225/4 . (10) 

We also have the lower limits U = 1 and K = Ko as y-o. A 
valid summation technique must yield these limiting values 
for UandK. 

Because of the fractional powers of Ko in Eqs. (9), the 
Pade sum of the "direct" series, Eq. (3), will fail to produce 
the correct asymptotic value of K. For example, the incor­
rect behavior of the [m,m], [m,m + 1], and [m + I,m] 
Pade approximants of this direct series is illustrated in Fig. 1. 
Thus, in what follows, we will not deal with the Pade approx­
imants of the direct series. 

The j power of Ko in U suggests that instead of working 
with the direct series, we should calculate the [m + I,m] 
Pade approximants, P[m + I,m], for Z = U 3

• Then 

7 

21T-
6 

5 
RADIUS OF 

CONVERGENCE 
~-- .. 

" 0 
Q 

3 a: 
~ 

LEGEND 

PeriOD 

2 Pall.04.l.04! 
125.2_1 
r2 ... 25~ 
!2".2 .. ' 

o 

-1~~~~~~~~~~~~~~~~ 

~ ~ 4 ~ 0 1 23" 5 6 

log10_ gKo 

FIG. 1. Comparison of the exact period with those determined from various 
Pade approximants. The period for P[ 14.13] coincides almost exactly with 
the exact period and is not visible. The period for Pa [14.14] deviates from 

the exact period for low values of y = gKo. while each of the [24.25 J. 
[25.24]. and [24.24] Pade approximants of the direct series deviate signifi­
cantly outside the radius of convergence yzO.116. 

ZzP[m + I,m] (11) 

and 

KzKo{P [m + l,m]}I/3. (12) 

The terms of Z are inaccurate beyond the chosen order of U. 
For our purposes a choice of order 50 was more than ade­
quate and we have used this to obtain P[ 2,1], 
P[3,2]' ... ,P[25,24]. The coefficients for P[14,13], given in 
Table I, yieldZzP[14,13] andK:::::Ko{P[14,13]}1/3. 

If the sequence of Pade approximants converges, then 
any desired accuracy in K can be obtained by an appropriate 
choice for the value of m. Our numerical results suggest that 

TABLE I. Coefficients of the [14.13] Pade approximant. P[ 14.13] = {I.:!. 0 Cly'}/{I.:~o d,y'} of the series Zassociated withEq. (3). ThenormalformKis 
given by setting m = 13 in Eq. (12). 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

1808 

1.000 000 000 000 00000oo 
44.831784212934880188 

898.880683944 01677951 
10 639.165 060022 835 342 
82640.647992903648310 

443020.52617902589532 
1 678 200.116 692 228 089 6 
4523026.6287915810469 
8617937.258956 140 827 5 

11 383 768.694 822 983 447 
10 061 467.373 625 541 364 
5611 136.004 484 921306 3 
1 789 539.665 080 642 886 7 

272 303.169 746 18504947 
12965.942908295871 194 
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1.000 000 000 000 00000oo 
42.581 784212934 880188 

804.571 624 464 913 29908 
8888.321 893796 1827393 

63676.695257241 372 118 
310150.585440 022 009 38 

1 047 147.533089756735 5 
2452852.6125869519973 
3 926329.085240 141 660 5 
4155451.1654373157189 
2 744 725.555 003 753 572 5 
1 024710.372 500 140 240 7 

179818.300 386 857 59176 
9642.611 655 328 590 2038 
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(1) the Pade sequence for Z converges, (2) there are no 
zeros or poles of the P[ m + I,m] on the positive real axis 
(y>O), (3) as y~ex), the P[m + I,m] with increasing m 
yield results that approach the asymptotic values given by 
Eqs. (9), and (4) the Pade sequence yields better results for 
smaller y. We have also performed the Borel-Pade summa­
tion for K, which gives slightly better results than 
P[m + I,m] for any given m. For example, the Borel-Pade 
sum obtained using Z with any given m will be comparable 
with the Pade sum obtained by P[m + 3,m + 2]. However, 
the gain in the Borel-Pade approach47 is offset, for the pres­
ent system, by the necessary extra numerical work and hence 
our Borel-Pade results will not be discussed further in this 
paper. 

Although the sequence ofPade approximants converges 
as m increases and gives, at least in principle, the sum of the 
BGNF series, the rate of convergence of the sequence is rath­
er slow when y becomes large. For example, at y = ex) , 

P[ 14,13 ] and P[ 25,24], respectively, give the values 
1.07684 and 1.072 53 for the constanta, Eq. (10), while the 
exact value for this constant to six figures is 1.06863. We 
therefore present a second expression for the sum of K that 
converges faster asy becomes larger. This additional expres­
sion is based on a connection between the BGNF and gener­
alized hypergeometric functions. 

B. The BGNF and generalized hypergeometric 
functions 

Recently, Codaccioni and Caboz13 have worked out the 
period of the anharmonic oscillator in terms of the hyperge­
ometric functionF(!, i, 1; - 8gE) , whereEis the total ener­
gy. If E is a function of Ko, it is a simple matter to relate Ko to 
E by using this hypergeometric function. By Hamilton's ca­
nonical equations of motion, the period of the classical mo­
tion is 

T= 21T, n = dE . 
n dKo 

Using the results of Codaccioni and Caboz we obtain 

!l= dE = ____ _ 
dKo F(!, i, 1; - 8Y) 

Y=gE, 

which has the solution 

Ko = EF(!,~, 2; - 8Y) , 

in agreement with the equation for the action given by Co­
daccioni and Caboz. The unique power series solution for E 
(in powers of Ko) of this functional equation turns out to be 

I 

the BGNF series K. Thus, at least for the anharmonic oscil­
lator under consideration, the BGNF series is the unique 
series for K in powers of Ko, which represents the period 
exactly. This provides strong additional evidence emphasiz­
ing the special role played by the BGNF perturbation meth­
od. 

Setting E = K in the above equations, we obtain 

T= 21T dK 
(13) {U=--, 

dKo ' (U 

dK 1 
Y=gK, (14) = 

dKo FC!,~, 1; - 8Y) 
and 

Ko = KF(!d, 2; - 8Y) . (15) 

Since the hypergeometric function52
•
53 F(M,2; - 8Y) 

converges for Y < l, we obtain the radius of convergence Yo of 
the BGNF series by solving the equation 

gK = A. (16) 

Using Eq. (12) for K and sincey =gKo, Eq. (16) gives 

y{P [14,13 nl/3 = A . (17) 

The physically acceptable solution of Eq. (17) gives the ra­
diusofconvergenceyo=0.116162 7807211097. This is in 
contrast to the RSP series, the quantum analog of the BGNF 
series, which has a radius of convergence of zero. 

To find a valid expression for K in the range Yo <yo;;;; ex) , 

the hypergeometric function of Eq. (15) is analytically con­
tinued52

•
53 to obtain 

The reversion of the series in Eq. (18) is complicated by the 
fractional powers of Y. In order to overcome this difficulty, 
we expand the F's of Eq. (18) in series to order N, set 
Z= (ay)-2/3 and W= y- 1/2, and expand the expression 
z = W [~f= 0 ai Wi] -213 to order N. This allows us to deter­
mine the Lagrange series54

•
55 for Wand hence for Y. Finally, 

the reversion gives K in terms of Ko as 

K= i: CiZi , Z= (ay)-2/3. (19) 
;=0 

A partial sum of this infinite series appears as 

( 
286c1O l00lc6 

4782969 50388480 
2431c2 

) 10 43c3 II 
Z + z 

1857 945 600 20 643 840 

( 
1547cI2 2431c8 148291c4 1003) 12} 

+ 129 140 163 - 906992 640 + 57330892800 + 6696927756288 z , 
(20) 

1809 J. Math. Phys .• Vol. 27. No.7. July 1986 Ali. Wood. and Devitt 1809 



                                                                                                                                    

where 

c = - 3r(V4/r23/2 . 

Observe that the first tenn of the series in Eq. (20) is the 
same as the asymptotic expression for K given in Eq. (9). 
The coefficients of the series in Eq. (20) are also in agree­
ment with those for the quantum asymptotic expansion for 
large quantum numbers n given in Eq. (1.9) of Hioe et al. 23 

This agreement is consistent with the validity of torus quan­
tization of the BGNF for large n (see Secs. III A and IV B). 

Since the direct series, Eq. (3), and the "asymptotic" 
series, Eq. (20), do not converge at Y = Yo, and since these 
series converge only siowly for points near Yo, a third func­
tion is required to conveniently represent K at and near Yo' 
The [m + I,m] Pade approximants, such as the one in Eq. 
( 12), can be used. By using a Pade approximant of suitable 
order one can join to it the asymptotic series at any point 
Y > Yo. In practice it is more efficient to construct [j, j ] Pade 
approximants, Po [j,j ], for the asymptotic series and to 
combinethePa [j,j] with theP[m + I,m] obtained earlier. 
The point Y = Yjoin used for joining the two Pade approxi­
mants should be in the region of validity of these approxi­
mants. We therefore advocate the use of the following ex­
pressions as the sum of the BGNF series in the interval 
O<Y~oo: 

K = Ko{P [m + I,m ]}1/3, Y<Yjoin' 

K = (1/g:r)Pa [j,j ], Y;>Yjoin' 

(21) 

(22) 

with appropriate values of m,j, and Yjoin' The coefficients of 
the [14,14] Pade, Pa [ 14,14], are given in Table II. Like the 
P[m + I,m], the Pa [j,j] does not have zeros or poles on 
the positive real axis. Numerical results obtained by using 
the two Pade approximants and by their combination are 
discussed in the following section. 

IV. SOME NUMERICAL RESULTS 

In this section we discuss the "goodness" of the above­
mentioned procedures for the sum of the BGNF of the an­
harmonic oscillator. 

A. Comparison of the periods of the classical motion 

While any desired accuracy in K can be achieved by 
using the Pade approximants of appropriate orders, we re­
strict our discussion to results that are obtained by joining 
the P[ 14,13] and Pa [14,14] aty = 0.25. A sensitive test of 
the accuracy of K is made by evaluating the periods of the 
system at different energies. In Table III, we compare the 
periods obtained by ( 1 ) evaluating the hypergeometric func­
tion of Eq. (14) (and its analytic continuation) and using 
Eq. (13), (2) by using Eqs. (12) and (13), and (3) by using 
the expression K::::: (Pa [14,14] )/g:r and Eq. (13). It can be 
seen from the table that if one uses Eqs. (21) and (22) with 
Yjoin = 0.25, then the maximum error made in the period is 
of the order of 10- 16

. For most practical purposes this error 
is negligible and hence Eqs. (21) and (22), with m = 13, 
j = 14, andYjoin = 0.25, provide adequate representation of 
the sum of K for all positive values of y. 

The reason for using the two Pade approximants rather 
than the direct series and the asymptotic series is that the 
Pade approximants analytically continue the corresponding 
series. The resulting regions of validity overlap substantially 
as is illustrated by the data in Table III. Furthennore, the 
two Pade approximants join smoothly as one can see by eval­
uating their derivatives at Yjoin' 

B. Results of torus quantization 

Since the BGNF Hamiltonian is a function of the action 
Ko, the torus quantization of the system is simple. It is ob­
tained by replacing Ko (in K) by n + ! where the integer n is 
the quantum number. Since the radius of convergence Yo of 
the BGNF series isO.116 162780721 1097 the usefulness of 
the direct series, Eq. (3), is restricted to small values of 
Y = g( n + !). Our summation of the BGNF series allows the 
semiclassical quantization of the anharmonic oscillator for 
all values of y. 

From Table IV, it is seen that the agreement between the 
results of the more accurate six-tenn WKBJ quantum calcu-

TABLE II. Coefficients of the [14,14] Padeapproximant, Pa [14,14] = {l::~o a;z'}/{l::~o b;z'} of the seriesgrK given in Eq. (20). The normal formK is 
given by settingj = 14 in Eq. (22). 

o 
I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

1810 

0; 

1.000 000 000 000 000 0000 
2.4740196391478285351 
2.896604 5344684497231 
2.135 700 469762673 7868 
1.108558 558098577 1433 
0.4277413333518203117 
0.1260993887259717405 
0.287 165710 030 707 5826X 10- 1 

0.504 284 469 8300782695 X 10- 2 

0.6731226819979753551 X 10-3 

0.662 594 851 279 210 0445 X 10-' 
0.455 331 053 824 1769842 X 10-5 

0.197 633 578 589 394 3311 X 10-6 

0.441513014932178317IXIO-" 
0.309 342 718 650039 6539 X 10- 10 
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b; 

1.000 000 000 000 000 0000 
2.164 895 567909 549 4041 
2.248 755 492 033 467 6660 
1.485 593 992001 7300473 
0.694 508 929 992 645 2409 
0.241674147528744 4151 
0.641231604 373651 0107X 10- 1 

0.130692578094516 1537X 10- 1 

0.203361222563497 8223X 10-2 

0.2366586753745700321 X 10-3 

0.197830088 100 645 3629X 10-' 
0.110417121593347 5518X 10-5 

0.357550719906155 8520x 10- 7 

0.493327250295914 5830X 10-9 

0.1155397358064167831 X 10- 11 
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TABLE III. Comparison of the periods of the anharmonic oscillator. Th, Tp' and Ta represent, respectively, the periods obtained by (I) evaluating the 
hypergeometric function of Eq. (14) (and its analytic continuation) and using Eq. (13), (2) using Eqs. (12) and (13), and (3) using the expression 
K ;:::;P

a 
[ 14,14 ]/gr and Eq. ( 13 ). The lastthree columns report the magnitudes of the differences identified by the respective column headings. They illustrate 

the extent to which the Pade approximants have analytically continued the direct and asymptotic series. Because of the large region of overlap, there is 
considerable freedom in choosingYjo;n . An obvious choice from this table is Yjo;n = 0.25. The coefficients required to evaluate Tp and Ta can be found in Tables 

I and II. 

gKo Th IT. - Tpl ITh - Tal ITp - Tal 

0.10 5.5785140512660515780 0.1273 X 10- 19 0.1081 X 10 10 O.l081xIO 10 

0.15 5.336 345 803 238494 1227 0.2003 X 10- 19 0.1219X 10- 12 0.1219XIO- 12 

0.20 5.135 845449401 0700175 0.1245X 10- 17 0.3617X 10- 14 0.3616X 10- 14 

0.25 4.965470247391 742 1306 0.6106X 10- 16 0.1991 X 10- 15 0.1380XIO- 15 

0.30 4.817834889 177 1434982 0.1I24X 10- 14 0.1662XIO- 16 0.1107 X 10- 14 

0.35 4.687 936 728 690 030 8494 0.1181 X 10- 13 0.2043 X 10- 17 0.1181 X 10- 13 

0.40 4.572 235 301 409 713 3601 0.8139 X 10- 13 0.4506 X 10- 18 0.8139Xl0- 13 

0.45 4.468 136302 124691 6946 0.4109 X 10- 12 0.2213 X 10- 18 0.4109 X 10- 12 

0.50 4.373 684 179 224 986 2070 0.1639XIO- 11 0.1736X 10- 18 O.l639X 10- 11 

lations and those from the torus quantization of the BGNF 
sum improves as n increases for any given g. The differences 
in behavior of the two sets of energies of our model integrable 
system are due to the inherent difference in the quantization 
procedures rather than a poor representation of the invariant 
tori (a situation that is common when a low-order BGNF 
series is used without appropriate summation). 

The torus quantization amounts to the quantization of 
the classical Hamiltonian K(Ko) by the operator K(Ko), 
where Ko = - ~ (d2/d€ 2 - €2). It preserves the Poisson 
structure of Ko and K. Other quantizations also preserve the 
Poisson structure6 so one is justified in asking how to write 
the correct SchrOdinger equation for this nonrelativistic an-

harmonic oscillator when the Hamiltonian of the system is 
given in the normal form K(Ko)' Further discussion of the 
quantization of this normal form will appear elsewhere. 

V.SUMMARY 

We have presented the BGNF series and its summation 
for an anharmonic oscillator. We have also demonstrated 
algebraically, through the use of hyper geometric functions, 
that the BGNF series is the only series representation ofthis 
Hamiltonian system as a function of Ko which preserves the 
period of the system. The summation of the BGNF series has 
permitted us to compare the torus quantization results for 
this system to its quantum results for all energies. In addi-

TABLE IV. Comparison of the torus quantization of the BGNF with known six-term WKBJ quantum results. (The six-term WKBJ results are more 
accurate than the torus, or equivalently, the one-term WKBJ results.) The quantum energy level and coupling parameter are given by nand g, respectively. 
The EWKBJ numbers are obtained by rounding oW the numbers given by Kesarwani and Varshni51

• The EBGNF numbers are computed by substituting 
g(n + 112) for Ko in the appropriate Pade approximant as determined by comparing g(n + 112) with Yjcin = 0.25. For a given value of g, agreement 
increases with n, whereas for a given value of n, agreement decreases with g. 

n g g(n + 112) E WKBJ EBGNF 

o 0.000 10 0.0000500 0.50003749 0.500 01875 
0.10000 0.0500000 0.53263589 0.517 577 83 

2 0.000 10 0.0002500 2.50048731 2.50046858 
0.10000 0.2500000 2.87397963 2.86547712 

10.0000 25.000000 8.317 639 39 8.272 911 80 
40000.0 100000.00 127.501 150 126.795606 

10 0.000 10 0.0010500 10.508275 1 10.5082565 
0.10000 1.0500000 14.9332626 14.9295411 

10.0000 105.00000 54.8862854 54.8689052 
40000.0 420000.00 859.417218 859.141872 

100 0.000 10 0.0100500 101.247040 101.247022 
0.10000 10.050000 252.448468 252.447633 

10.0000 1005.0000 1 103.21433 1 103.210 48 
40000.0 4020000.0 17458.8967 17458.8356 

1000 0.000 10 0.1000500 1067.12127 1067.12126 
0.10000 100.05000 5 147.03066 5147.03048 

10.0000 10005.000 23569.3185 23569.3176 
40000.0 40020000.0 373891.711 373891.698 

1811 J. Math. Phys., Vol. 27, No.7, July 1986 Ali, Wood, and Devitt 1811 



                                                                                                                                    

tion, our BGNF series has reduced the dynamical equations 
of the system to a form suitable for addressing some basic 
questions of quantizing classical systems. 
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When Einstein's equations are supplemented by symmetry conditions, linearization instabilities 
can occur that are not present in either of the two sets of equations. The general conditions for this 
joint instability are investigated. This is illustrated with an example where both the Einstein 
equations and the flatness condition have more linearized solutions than exact solutions. In a 
minisuperspace model the geometrical reason for these instabilities is shown. 

I. INTRODUCTION 

The validity of the linearized approximation to nonlin­
ear geometrical equations, such as Einstein's equations, has 
been largely clarified in the past decade. 1 It is appropriate to 
think of solutions as points in a suitable function space; lin­
earized objects are then members of the corresponding tan­
gent space. If the tangent space defined by the linear approxi­
mation to the nonlinear equations is the same as the tangent 
space to the manifold of solutions, then the equations are 
called linearization stable. Thus linearization stability near a 
solution means that the solution manifold is smooth near 
that point-for each direction defined by a solution of the 
linearized equations there is a family of exact solutions (a 
curve on the solution manifold) whose tangent is that direc­
tion. 

Einstein's equations have been shown to be linearization 
stable about most globally defined solutions, both for asymp­
totically flat and for spatially compact manifolds. The excep­
tions are solutions on compact manifolds with Killing vector 
symmetries. Here there are quadratic conditions, in addition 
to the linearized equations. These conditions must be satis­
fied to assure that there be exact solutions corresponding, in 
the above sense, to solutions of the linearized equations. 
These quadratic conditions are of global type, involving inte­
grals over a spaceJike Cauchy surface. In any finite local 
region (with boundary), Einstein's equations are always lin­
earization stable.2 

However, in a remarkable paper,3 Geroch and Lind­
blom have recently shown that in the context in which exact 
solutions are typically discussed the linearized approxima­
tion is not always reliable; in fact they exhibited linearization 
instabilities that are characterized by local second-order 
conditions (and therefore have nothing to do with the global 
conditions mentioned above). The context where this occurs 
involves existence of fixed Killing vectors in all the metrics 
under consideration. This restriction to symmetric metrics4 

is by itself linearization stable, and hence cannot be solely 
responsible for the instability they find. The Geroch-Lind­
blom example exhibits another surprising feature, namely 
that to linear order all solutions of their class are "gauge," 
i.~., related by diffeomorphism to flat space-time; yet in 
higher order genuinely curved, nonftat solutions are ob­
tained. 

aJ Permanent address: Raman Research Institute, Bangalore 560 080, In­
dia. 

Although Geroch and Lindblom give a satisfactory and 
instructive explanation of these circumstances, they do not 
interpret their results in the standard language of lineariza­
tion stability theory. It is the aim of the present paper to 
show that both of the surprising features found by Geroch 
and Lindblom are a result of linearization instability in the 
usual sense, and to give a geometrical interpretation of this as 
lack of smoothness in a function space setting. The key to our 
interpretation of this instability is the observation that two 
linearization stable equations may not remain stable when 
imposedjointly. For functions of a finite number ofvariables 
this is the easily visualized fact that the intersection of two 
smooth surfaces is not necessarily smooth (Fig. 1). In Sec. II 
we explore this phenomenon, which for brevity we call "joint 
instability," and we discuss the second-order conditions that 
follow if the joint stability criterion is violated. For simpli­
city the equations are written for the finite-dimensional case, 
but they can be generalized easily to function spaces. 

In Sec. III we consider the joint stability of the vacuum 
Einstein equations and certain symmetry conditions, as well 
as joint stability of space-time flatness and symmetry condi­
tions. We find that both systems are jointly unstable. Thus 
there are more symmetric solutions of the linearized Ein­
stein equations than symmetric exact solutions, which is one 
of the Geroch-Lindblom results; and there are more linearly 
flat symmetric metrics than exactly flat symmetric metrics 
which is the other Geroch-Lindblom result. ' 

FIG. 1. Simple example of ajoint instability. The two surfaces described by 
~s. (4a.> and (4b > are everywhere smooth. However, when a = I their 
intersection consists of the pair of lines Ll and L 2• This intersection is not 
everywhere smooth but has a "conical" singularity at L{1L2• 

1813 J. Math. Phys. 27 (7), July 1986 0022-2488/86/071813-04$02.50 © 1986 American Institute of Physics 1813 



                                                                                                                                    

In Sec. IV we construct a finite-dimensional "minisu­
perspace" of symmetric initial data in which we study the 
conical structure of the subspace of Einstein solutions, and 
of fiat metrics, which is the geometrical feature associated 
with these instabilities. 

II. JOINT INSTABILITY AND SECOND-ORDER 
CONDITIONS 

We consider the nonlinear equations as a map <I> from a 
domain D to a range R. The space of solutions S is the subset 
of D that maps to zero, <I>(S) = O. The linearization of <I> is 
the differential d<l> that maps the tangent space at some point 
of S to the tangent space of the origin of R. Let D be N 
dimensional, with coordinates xa

, and let S be described by 
Mequations~I(~) = 0 (a = I, ... ,N, i = I, ... ,M). Ifd~ are 
coordinates of the tangent space at a point PES, then the 
linearized equations about Pare 

0",1 
d~ 1= _'f'_ dxa = o. 

axa 
(Here and in the following all partial derivatives are evaluat­
ed at P.) A convenient condition for linearization stabilitr 
is that d<l> be a surjective map, that is, if dxa is allowed to 
range over the whole tangent space of D then d~ 1 will fill the 
whole of TR, the tangent space of R. 

Suppose <I> and 'fI are equations that can be simulta­
neously imposed on D, so that they map D to two possibly 
different ranges R .. R z• Suppose further that they are sepa­
rately linearization stable, hence d<l> and d\fI are surjective 
on TR I and TR2, respectively. Let SI and S2 be the subspaces 
ofD corresponding to the solutions, <I>(SI) = 0, 'fI(Sz) = O. 
Imposing these equations simultaneously defines the inter­
section SlnS2' We can consider the simultaneous set as a 
single map X = (<I>,'fI) that maps D to the direct product 
R I X R2• Then X is linearization stable-and hence <1>, 'fI are 
jointly stable-if its differential dX = (d<l> ,d'fl) is surjective 
on TRIXTRz• 

If, on the contrary, dX is not surjective, there must be a 
linear relation between d<l> and d\fI (since they are linear and 
separately surjective). That is, there must be one or more 

covectors w = (u,v) in T*R I X T*Rz such that, for all dXa
, 

A AA 

(1) 

As usual in the theory of linearization stability, existence of 

such wallows us to construct second-order conditions on the 
A 

dxa. Ifthese conditions are nonempty, there is joint instabil-
ity. To construct these conditions we evaluate the simulta­
neous equations (<I>, 'fI) = 0 to second order (here d z denotes 
the second derivative, not d A d): 

0= (dz<I>l,dz'fI j ) 

= ( a Z<I>I dxa dxb + a<l>1 d 2xa, 
axaaxb axa 

a 2'f1j dxa dxb + a\fIj d 2xa) . 
axaaxb axa (2) 
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that is, one quadratic relation for each of the covectors w. 
A 

[These are nonempty, that is, independent of the linearized 

equations, unless there is a matrix Lij such that Qab 
A A 

= (aX1axa)Lij (aXllaxb). In the latter case, higher-order 
A 

approximations to the simultaneous equations must be con-
sidered to decide about instability.] 

A simple example of joint instability is provided by the 
two surfaces in Euclidean three-space, the hyperboloid 

<I> = (XI)2 + (xz)z - (X3 )2 - I = 0, (4a) 

and the plane 

'fI=xl-a=O, (4b) 

as shown in Fig. 1. For a generic value of a their intersection 
is smooth, a pair of hyperbolas. However, for a = I it is a 
pair of intersecting, lines, x2 = ± x3

, hence the two lineari­
zation stable equations (4) must be jointly unstable for this 
value of a. In fact, any point on the intersections satisfies 
Xl = a, (X2 )2 - (X3 )2 = 1 - a2• For such values of x2, x3, 

the linearization 

dx = (d<l>,d'fl) 

= (2a dx l + 2x2 dx2 
- 2x3 dx\ dXI), (5) 

which maps R3 to RIXR I
, is surjective whenever x 2 or x 3 

differ from zero. However when a = 1 and x 2 = 0 = x\ we 
have the linear relation d<l> - 2d'fl = 0, which is of the form 
(1) with U = 1, v = - 2. The corresponding quadratic con­
dition (3), 

2(dx l )2 + 2(dx2 )2 - 2(dx3)2 = 0, (6) 

is nonempty, hence there is a joint instability: the linearized 
equations for a = 1 are satisfied by dx l = 0 and dx2

, dx3 

arbitrary; but exact simultaneous solutions of (4a) and (4b) 
exist only for the directions that also satisfy (6). 

III. EINSTEIN'S EQUATIONS AND SYMMETRY 
CONDITIONS 

Since it is sufficient, and more convenient, to discuss the 
stability of the Einstein constraints, we shall assume that the 
symmetries are spacelike and that the metric has nontrivial 
time dependence. (This is not essentially different from the 
case discussed by Geroch and Lindblom, where the metric is 
independent of x, y, and t but depends on z.) The space-time 
is described in terms of the initial data on a Cauchy surface,6 

namely the metric gij of the surface and its conjugate mo­
mentum"ll (related to the second fundamental form). The 
Geroch-Lindblom symmetry condition demands that there 
be three commuting Killing vectors that are passive, i.e., the 
same for all metrics. Without loss of generality we can there­
fore assume that the three spacelike Killing vectors k are the 
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coordinate directions a / axi. The corresponding conditions 
on the initial data are 

{
!f kgij' (7a) 

0= \II (g,17') = U7 (7b) 
.z k17'ij' 

The Einstein constraints are 

(8a) 
(8b) 

and the flatness conditions are the Gauss-Codazzi equa­
tions7 

{
R .. (g) + 17' .. ~. - 117' .. 17'/, (9a) 

O-.m( )_!/ !/ J '- IJ 
- '¥2 g,17' -

17'ijlk -17'iklJ +! (gik17',J -gij17',k)' (9b) 

The linearizations about flat space-time (described by gij 

= /jij' 17'ij = 0), written in the usual notation dgij = hij' d~J 
= wij take the form 

d\{I= {dr.~(h) =!(hki,J +hkJ,i -hij,k)' 

W!/ ,k' 

{

dR(h) = dr~·k - dr~k·' dcf.> = II, 1,1 

1 wij . 
,J' 

{

dR .. (h) =dr1<.k -dr~k·' dcf.>2 =!/ IJ, 1 ,J 

(W··k - W·k, .) + 1 (/j·kW . - /j··w k)' !/, 1 J '- 1 ,J !/' 

(10a) 
(lOb) 

( 11a) 

( 11b) 

(12a) 

(12b) 

Note that the equations for h and for W decouple. Since the 
exact equations (7b), (8b), (9b) are linear in 17', we do not 
get an instability from the linear relations between (lOb), 
(lib), and (12b). However, the corresponding linear rela­
tions between (lOa) and (lla) and between (lOa) and 
(12a) do result in second-order equations of the type (3). 
For example, (1Ia) is a kind of divergence of (lOa) and we 
have 

u = /j(x - x'), 
x 

Vijk = - /jij /j,k (x - x') + /j/ /j,i (x - x') 
x 

[where the index A ofEq. (1) corresponds to the continuous 
index x, the index i to the continuous index x', and the indexj 
to i,j, k, and x'], so that the equation corresponding to (3) 
obtained from Eqs. (7a) and (8a) becomes 

2 ···2 2khh d R (h,h) + WijwlJ - (Wi I) - d r ij ( , ) ,k 

+ d2r~k (h,h),J = 0 
ij i 2 = WijW - (Wi) . 

Similarly from Eqs. (lOa) and (12a) we get 

WikW/ _ WIjWk k = O. 

( 13) 

(14) 

Since the exact equation \II = 0 actually implies RIj = 0 (flat 
three-space), the exact cf.>1 = 0 and cf.>2 = 0 equations reduce 
to Eqs. (13) and (14), with wlj replaced by ~j. It is then 
easily seen that there are no further conditions on the linear­
ized solutions beyond (13) and (14). 

What are the consequences of this joint instability? For 
\II and cf.>2 it means that there are too many linearized sym­
metric and flat space-time metrics. In fact, once D\II = 0 is 
imposed, dcf.>2 always vanishes; that is, any constant hlj,wlj 

satisfy the first-order space-time flatness condition. All the 
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corresponding space-time metrics are therefore "gauge," 
i.e., diffeomorphic (to linear order) to Minkowski space. 
This is the first surprising feature noted by Geroch and 
Lindblom, 

Similarly, the joint instability of \II and cf.>l means that 
there are too many linearized symmetric vacuum Einstein 
metrics; again, all solutions of d\ll = 0 also solve Einstein's 
equations to linear order. Those corresponding to actual so­
lutions have to satisfy the local second-order condition, Eq. 
( 13 ). This is the second surprising feature noted by Geroch 
and Lindblom. [However, their distinction between true 
and apparent gauge is not represented precisely by our flat­
ness condition (9). For example, all nonvanishing solutions 
of Eq. (13) would be apparent gauge, but these still include 
some flat space-times, namely those of Eq. (17) below.] 

IV. A MINISUPERSPACE MODEL 

The Geroch and Lindblom example that we discussed in 
Sec. III can be used to construct a minisuperspace8 that illus­
trates the conical nature of the solution manifold at points of 
instability. As initial data we consider only the Euclidean 
spatial metric /jij and spatially constant momenta ~J. (We do 
not consider the corresponding mini-phase space of all spa­
tially constantglj and ~j, with positive definite glj , because it 
has a conical singularity itself at glj-+O') These form a six­
dimensional space on which the six independent compo­
nents of 17' ij are smooth coordinates. We investigate the sub­
spaces cf.>1 = 0 and cf.>2 = O. Since the symmetry is 
presupposed, the instability will be exhibited by singularities 
of these subspaces. 

The subspace l:l of solutions of Einstein's equations is 
described by 

0= cf.>1 = 17'ij~j - (17'/)2 = ~JGijk/~/, 
where the DeWitt metric 

(15) 

Gijkl = /jik/jjl - /jlj/jkl (16) 

has signature + + + + + -. Therefore l:1 is a five-di­
mensional "light" cone over a four-sphere S4. [The four­
sphere can be obtained by intersecting (15) with the five­
plane 17'i i = 1.] The singular point of this cone occurs at 17' ij 
= 0, i.e., at the Minkowski metric for the space-time gener-

ated by these initial data. Tangents at that point satisfy the 
second-order condition (13), but they span the entire six­
dimensional space. All directions at the origin that are not on 
the cone l:1 represent unstable solutions of the linearized 
Einstein constraints. 

The subspace l:2 representing flat space-time metrics is 
described by 

0= cf.>2 = ~k17'/ - 17'k k~J. (17) 

The general solution of ( 17) is 

(18) 

where Vi are the components of an arbitrary spatially con­
stant vector on the initial surface. Therefore l:2 is a three­
dimensional cone over the two-dimensional surface P de­
scribed by points ~j of type (18) with Vi a unit vector. Since 
any such Vi corresponds to a point on the two-sphere S 2, and 
since Vi and - Vi map via (18) to the same point on P, Pis 
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FIG. 2. Minisuperspace of Kasner space-times. The three axes (labeled 1TII, 

n22, "r3, respectively) represent flat space-times. All other points on the 
cone represent nonflat Kasner space-times. The plane represents the time 
coordinate condition tI, = const. All Kasner solutions satisfying this coor­

dinate condition lie on the circle C. 

topologically the projective plane. Since (17) implies (15), 
I2 is contained in II (andPCS 4

). The singular point ofI2 is 
again ",u = 0, and its tangents again span the entire six-di­
mensional space. All directions at the origin that are not on 
I2 represent unstable ("apparently flat") solutions of the 
linearized flatness conditions. 

To recover the Kasner solutions in their usual, diagonal 
form we reduce the number of minisuperspace dimensions to 
three by setting 

1T12 = ~3 = 1T13 = O. 

The intersection with II is a two-dimensional cone; that 
with I2 consists of three lines (see Fig. 2). Both of these 
surfaces have a singularity at the origin, illustrating the geo­
metrical reason for the instability in this restricted case. To 
regain the usual description of the Kasner solutions, we im­
pose the time coordinates condition, 1T/ = const (see Ref. 
9). The resulting family of solutions form a circle, as shown 
in the figure. Since these metrics cannot be continuously 
connected to the Minkowski metric, the geometrical reason 
for the instability is not apparent with this coordinate condi­
tion. 

v. CONCLUSIONS 

We have seen that two individually linearization stable 
equations can be jointly unstable when imposed simulta­
neously. This situation may of course arise in cases other 
than the example we discussed above. Thus, joint instability 
may become important in Kaluza-Klein-type theories, 
where Einstein's equations are supplemented by further con­
ditions. 

Our results also have implications for the perturbative 
approach to quantum gravity. For example, since the 
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Kasner-type perturbation we discussed in first order corre­
spond to gauge transformations, only the phase of the quan­
tum wave functional will vary in first order. Another quan­
tum implication oflinearization instability has been pointed 
out by Moncrieflo: the operator form of the second-order 
conditions should be imposed on the wave function oflinear­
ized quantum gravity. An analogous procedure has to be 
followed where there is ajoint instability, provided of course 
that a consistent quantum analog exists of the jointly unsta­
ble equations. Similarly, Moncrief conditions arise if there is 
a classical joint instability, and if the supplementary condi­
tions are solved before quantizing (as in the minisuperspace 
approach). 
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The static, cylindrically symmetric solutions to Einstein's equations with a cosmological term 
describing cosmic strings are determined. The discussion depends on the sign of the cosmological 
constant. 

I. INTRODUCTION 

The static, cylindrically symmetric solution to Ein­
stein's equations describing a cosmic string characterized by 
a linear mass density J.L (for J.L=/= 1/4G in units for which 
c = 1, G being the Newton constant) has been recently de­
rived. 1-3 The corresponding space-time is locally flat, but of 
course it is not globally flat. The singular line source of the 
field equations, which is the energy-momentum tensor of a 
cosmic string,4 is introduced by the existence of a conical 
singularitr-7 of the space-time. 

The purpose of this paper is to extend these results to the 
case where the cosmological constant A does not vanish. To 
do this, we shall determine the most general, static, cylindri­
cally symmetric solutions to the field equations 

RafJ - ! RgafJ + AgafJ = 0 . (1 ) 

The solutions to the field equations (1) depending only on 
one coordinate have been analyzed already.8-IO The method 
can be easily applied in our case. The main result will be to 
select those that describe a cosmic string and to discuss fol­
lowing the sign of the cosmological constant. 

II. THE STATIC CYLINDRICALLY SYMMETRIC METRICS 

A static, cylindrically symmetric metric can be written 

tJs2 = - dp2 - g2(P)dr - g3(p)dq; 2 + g4(p)dt 2 , (2) 

in a coordinate system (t,p,z, q;) withp>O and 0,q;<217', the 
hypersurfaces q; = 0 and q; = 217' being identified. The 
square root of the determinant of metric (2) u is given by 

u = (g4K,g3) 1/2 • (3) 

The field equations (1) reduce to the following system of 
differential equations: 

(ulg/ ) g;)' + 2Au = 0, i = 2,3,4, 
(4) 

1 " 1 "+ 1 " 4A 0 --g2 g3 + --g3 g4 --g4 g2 + =, 
g,g3 g3K4 g4K2 

where a prime indicates differentiation with respect to p. 
From system (4), we deduce that u satisfies 

u" + 3Au =0, 

and hence u satisfies 

(5) 

U,2 = _ 3Au2 + K2 , (6) 

where K is a strictly positive constant of integration. Taking 
into account Eq. (4), the first three equations of system (3) 
can be integrated in the form 

1 KKI 2u' 
-g;=--+-, ;=2,3,4, 
gl u 3u 

(7) 

where the KI are three constants of integration. They are not 
arbitrary; insertion of expressions (7) into the last equation 
of system (3) yields the following algebraic equations: 

K2 + K3 + K4 = 0 , 

K~3+K~4+KJ(2= -~, 
(8) 

which determine the constants KI in terms of one parameter. 
The form of the solution to Eqs. (5) and (6) is depen­

dent on the sign of the cosmological constant. Requiring 
cylindrically symmetric solutions with respect to the axis 
p = 0, we must take 

u(p) = [KI(3A)I/21sin[(3A)I/~1, for A>O, 
(9) 

u(p) = [KI( - 3A)I/2]sinb[( - 3A)I/2p ], for A<O. 

Substituting u, given by (9), into system (7), the equations 
can be integrated to give 

{ [
(3A)I/2 ]}K; 

KI(P) =it tan 2 p sin2/3[(3A)I/2p1, 

for A>O, 
( 10) 

KI(P) = it {tanh[ ( - ~A)I/2 p Jr' sinh2/3 [ ( - 3A)I/2 p] , 

where the it are three constants of integration that have to 
satisfy 

~ ~ ~ =K2/13AI (11) 

in order to verify relation (3). Moreover we can always give 
arbitrary values for constants ~ and ~ with the help of an 
appropriate change of coordinates t and z. 

We have now completely determined the general, static 
metric with cylindrical symmetry (2). They are given by 
expressions (10) and they depend only on two parameters: 
the one occurring in the general solution to algebraic equa­
tions (8) and the other K. We can calculate straightforward­
ly the nonvanishing components ofthe Weyl tensor; we find 

. K2 (K~ 2) KK.u' CPI.=- -'-- ___ '- ;=234 
pI u2 4 9 6u2 ' , , , 

C ij _ K2 (KIK) 1) K(Ki +Kj)u' 
Ij --;; -4-+"9 + 6u2 ,i=/=j. 

(12) 
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It may be of interest to note that the Weyl tensor is singular 
at p = 0 except for the values of the constants K j taken as a 
circular permutation of - i, - ~, and ~. Moreover for these 
values it is type D in the Petrov classification. 

III. THE STATIC, CYLINDRICALLY SYMMETRIC 
STRINGS 

We now turn to select metrics (2) given by expressions 
(10), which describe cosmic strings located at p = O. We 
recall that a metric (2) has a conical singularity when in the 
limit as~, it tends to the following form: 

dgl = - dp2 - dr - B 2p2 df{J 2 + dt 2 , ( 13 ) 

whereB is a constant (B #OandB # 1). Suchan asymptotic 
form ( 13) induces on the axis a singular part to the source of 
field equations (1), which is the energy-momentum tensor 

T' = rz = I-B 8(p) and TP = T'" =0 (14) 
, z 4G ~ _g P '" ' 

where g is the determinant of the induced metric on the two­
surface, t = const, and z = const. Form (14) of energy-mo­
mentum tensor characterizes a static, cylindrically symmet­
ric string of linear mass density Il such that 

Il = (1 - B)/4G . (15) 

In order to arrive at the asymptotic form (13) for ex­
pressions (10), we must take 

K2 = - j, K3 = j , K4 = - j , 
I 4/3 2 0 2

-2/3 (16) 
g~ = 2- 2 

3, g~ = 2 K 113AI, g4 = . 
We remark that this requirement does not fix constant K. 
Hence metric (2) given by expressions (10) with the choice 
of constants (16) describes a cosmic string of linear mass 
density Il given by 

Il = (1 - K)/4G. (17) 
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IV. CONCLUSION 

We have to ask whether the space-times that we have 
found to describe cosmic strings are regular outside the axis 
p = O. In the case where the cosmological constant is nega­
tive, there is no problem. The Weyl tensor is regular every­
where and it is type D in the Petrov classification and more­
over it tends to zero for largep. On the other hand, in the case 
where the cosmological constant is positive, it is easy to see 
from expressions (12) that the invariant C afJ yfi C yfi afJ of the 
Weyltensoris singular atp = 1T1(3A) 1/2. Consequently, the 
geometry of this space-time is singular and such a solution 
must be rejected. 

The above analysis is based on the theory of a conical­
type line source. A recent attempt has been made l ! to deter­
mine the exterior metric for an extended cosmic string as­
suming some simple forms of the energy-momentum tensor. 
Nevertheless, these questions should be reexamined within 
the theory of a self-interaction scalar field coupled to a gauge 
field as done by Garfinkle!2 in the case where the cosmologi­
cal constant vanishes. 

'J. R. Gott,lII, Astrophys. J. 288, 422 (1985). 
2W. A. Hiscock, Phys. Rev. D 31,3288 (1985). 
3B. Linet, Gen. Relativ. Gravit. 17, 1109 (1985). 
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'w. Israel, Phys. Rev. D 15, 935 (1977). 
6D. D. Sokolov and A. A. Starobinsky, SOy. Phys. Dok!. 22, 312 (1977). 
7 A. H. Taub, J. Math. Phys. 21, 1423 (1980). 
BE. Kasner, Trans. Am. Math. Soc. 27, 155 (1925). 
9A. Z. Petrov, Einstein Spaces (Pergamon, New York, 1969), p. 84. 
lOp. Spindel, Gen. Relativ. Gravit. 10,699 (1979). 
"Q. Tian, "Cosmic strings with a cosmological constant," University of 

Chicago preprint, 1985. 
I2D. Garfinkle, Phys. Rev. D 32, 1323 (1985). 
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Einstein's equations in the Newman-Penrose formalism for vacuum, vacuum with cosmological 
const~t, and electrovacuum fields are expressed as Cartan ideals. Two different prolongations of 
these tdeals are obtained. These two types of prolonged ideals generalize previous prolongations 
for vacuum fields to vacuum with cosmological constant and electrovacuum fields. Some 
Backlund transformations are obtained for vacuum, vacuum with cosmological constant, and 
electrovacuum fields. These Backlund transformations include the generalized Kerr-Schild 
(GKS) transformation, and a two-parameter generalization of the GKS transformation. GKS 
transformations are studied in detail. Expressions for the transformation of Newman-Penrose 
quantities are given and algebraic properties are discussed. It is shown that the GKS 
transformation cannot give algebraically general and asymptotically fiat vacuum and 
electrovacuum space-time metrics. 

I. INTRODUCTION 

The geometric theory of partial differential equations 
(POE's) as found by Cartan,I-3 besides its own interest, is a 
useful tool for inverse scattering problems and construction 
of Backlund transformations. The essence of Cartan's ap­
proach is to express POE's as a differential ideal.4 Then, 
prolongating this ideal,5-7 it is possible to obtain "associated 
equations of the POE," which are used in solving the origi­
nal POE's via inverse scattering methods, or in establishing a 
correspondence between solutions of the POE's (Le., Back­
lund correspondence). 

Inverse scattering technique8 is a well-understood and 
powerful tool in two-dimensional problems. Extension of 
this method to higher dimensions is also subject to current 
interest.9 The first step in the application of the inverse scat­
tering technique is to find the associated linear equation for 
the POE's, i.e., the linear equation whose integrability is 
guaranteed by the original POE's. For problems in higher 
dimensions existence of associated linear equations is not 
sufficient to solve the POE's, but they may lead to Backlund 
transformations. The prolongation technique mentioned 
above can be used to obtain these associated equations. Pro­
longation was first described by Cartan as a lifting of the 
ideal representing the POE's to a fiber bundle, and used to 
eliminate independent variables. A nontrivial generalization 
is given by Estabrook and Wahlquist10 as prolongating the 
ideal (representing the POE's) by lifting and adding new 
generators. These additional generators represent associated 
equations for the original POE's. 

Applications of inverse scattering to general relativity is 
practically restricted to space-times admitting symmetries. 

0) Present address: Mathematics Department. State University of New 
York at Stony Brook. Stony Brook. New York 11794. 

In fact, space-times admitting two commuting non-null 
Killing vector fields has been shown to be completely inte­
grable11,12 and their associated linear equations led to several 
equivalent Backlund transformations. 13

-
15 The applications 

of prolongation technique to general relativity starts with 
Harrison, by the construction of Backlund transformations 
for the Ernst equation. 13 Later work, from Chinea 16 and 
Glirses,17 generalize this construction to space-times with­
out symmetries satisfying vacuum Einstein equations: 
Chinea proposes a linear equation to be useful in inverse 
scattering (see also Julia 18). On the other hand, Glirses' ap­
proach leads to the construction of Backlund transforma­
tions, 17,19 which are generalized to Einstein spaces (vacuum 
with cosmological constant) and electrovacuum fields in the 
present work. 

Prolongation technique, as given by Chinea, Glirses, 
d H . 16,172021 k f . an arnson "ma e use 0 a compact matnx formu-

lation of Einstein's equations obtained from connections in 
principal bundles. In fact, starting from a null basis for tet­
rad vectors, the expressions obtained constitute a compact 
version of the Newman-Penrose (NP) formalism.22 Expres­
sion of Einstein's equations for various (vacuum, vacuum 
with cosmological constant, electrovacuum) cases in com­
pact form are given in Sec. II. 

The formalism described above is used to study Ein­
stein's equations in the framework of Cartan's theory of dif­
ferential equations: The PDE's in terms of differential forms 
obtained in Sec. II are used to construct a closed ideal in Sec. 
III. Then, in Sec. IV prolongated ideals are investigated, and 
two different prolongations of the ideals constructed in Sec. 
III are given. One of the prolongations generalizes the equa­
tions obtained by Chinea16 to nonvacuum fields!9 and the 
other gives Backlund transformations that are discussed in 
detail in Sec, V. In Sec. V, some Backlund transformations 
are constructed. Construction of the Backlund transforma­
tion is not sufficient to ensure the existence of new solutions 
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since it still remains to solve the associated equations that 
may well lead (since the system to be solved may be overde­
termined) to nontrivial restrictions of the background (i.e., 
the known solution to start with) or to a trivial solution for 
the transformation itself. This last step, that is, the solution 
of associated equations, is presented in detail for the OKS 
transformation in Sec. VI. The compatibility condition of 
the OKS transformation for algebraic general backgrounds 
is found and examples for space-times satisfying these condi­
tions are given. The main feature of this constraint is that 
vacuum (and in general electrovacuum) backgrounds ad­
mitting the OKS transformation cannot be both algebraic 
general and asymptotically fiat,22,25,26 and since the con­
straint is invariant under the OKS transformation resulting 
space-times also will have the same character. 24 

II. EINSTEIN'S EQUATIONS IN THE COMPACT 
NEWMAN-PENROSE FORMALISM 

In this section we will give a compact formulation for 
the structure equations of a space-time and the Einstein 
equations. We will essentially express Newman-Penrose 
(NP) equations22 in terms ofsl(2,C)-valued forms. 27 Then 
Einstein's equations are obtained simply by equating compo­
nents of the tracefree Ricci spinor and curvature scalar to 
corresponding spinorial components of the energy momen­
tum tensor. The crucial point of the formulation is that we 
have to write these equalities as matrix-valued differential 
forms that will be suitable for the expression of equations of 
motion for physical (nongravitational) fields. 17 

In the following we denote by M a space-time manifold 
with a Lorentz metric g. The bundle of orthonormal frames 
on M is a principal fiber bundle28,29(a) with structure group 
SOC 1,3). Then the connection form of M takes its values in 
the Lie algebra of SOC 1,3), and in terms of the canonical 
form of the frame bundle, structure equations of M can be 
written in a compact form as 

de=-UJl\e, 

dUJ = - UJ 1\ UJ + .0.. 

(2.la) 

(2.1b) 

In the equations above, e is an R4 valued one-form. In 
fact the orthonormal tetrad one-form e = {ek }, where ek 

= ek,.. dxl-' in a coordinate basis with the metric given by 

g = eo®eo - el ®el - e2 ®e2 - e3 ®e3, (2.2) 

where ® denotes tensor product, and UJ and .0. are, respec­
tively, connection and curvature forms taking values in the 
Lie algebra of SO ( 1,3). In Eq. (2.1) d is the exterior deriva­
tive and 1\ denotes exterior multiplication of corresponding 
matrices. In the following we will drop the 1\ sign for exteri­
or products, and all multiplications should be understood as 
appropriate matrix multiplications with exterior products of 
corresponding forms, unless otherwise stated. 

To obtain a compact NP formalism, we will first estab­
lish correspondence between an orthonormal frame {ek} 
and a 2 X 2 Hermitian matrix whose entries constitute a null 
frame, then we will give structure equations in terms of this 
matrix and sl(2,C)-valued forms, and finally we will present 
transformations of the connection and curvature resulting 
from the action ofSL(2,C) on null frames. 

1820 J. Math. Phys., Vol. 27, No.7, July 1986 

We establish a 1-1 correspondence between the ortho­
normal frame {ek} and 2 X 2 Hermitian matrix 0' as 

I 3 

0' = - I (O'kek), (2.3a) 
Ji k=O 

ek = (I1Ji)Tr(O'O'k)' k = 0, ... ,3, (2.3b) 

where the O'k are Pauli spin matrices, i.e., 

0'0 = (~ ~), 0'1 = (~ ~). 
0'2 = ( ~ i ~). 0'3 = (~ ~ J 

We then define a null frame {l,n,m,m} as 

1= (eo + e3 ), n = (eo - e3 ), 

Ji Ji 
(el + fe2) - (e l - fe2) m= , m= 

Ji Ji 
with the metric given by 

(2.4) 

(2.5) 

g=l®n+n®l-m®m-m®m. (2.6) 

Then Eqs. (2.3a) and (2.5) give an identification of the 
null frame {l,n,m,m} with 2X2 Hermitian matrices as 

0' = (~ :). (2.7) 

It can be seen that any other identification of the null frame 
{/,n,m,m} with Hermitian 2 X 2 matrices is similar, either to 
0' or its complex conjugate iT. We will write all equations in 
terms of iT and iT = EO'Et (see Ref. 30), where E = - f0'2' 
That is, 

a = (n - m), iT = ( 1m). 
-m I m n 

(2.8a) 

In the following, 1j and 'I] t denote complex and Hermitian 
conjugates of 'I] respectively, and fJ is equal to E'I]Et, for any 
'1]. Also we have 

r= -ErtEt = -ft, 
¢ = _ ErPtEt = _ ~t. 

(2.8b) 

(2.8c) 

We now give structure equations in terms of a and 
sl(2,C)-valued connection and curvature forms r and R, as 

da + ra - art = 0, (2.9a) 

dr + rr -R =0, (2.9b) 

and we obtain Bianchi identities by taking exterior deriva­
tive of Eqs. (2.9a) and (2.9b) as27 

Ra + aR t = 0, 

dR -Rr + rR =0, 
with 

where 

ro= yl+ En -am -pm, 
r I = - 7'1 - Kn + pm + O'm, 

r 2 = vI + 1Tn -Am - pm; 

Ro = (A - rPll - "'2)ln + "'31m + rPlzim 

A. H. Bilge and M. GOrses 

(2.lOa) 

(2. lOb) 

(2.11) 

(2.12a) 

(2.12b) 

(2.12c) 
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(2.13a) 

RI = (,pI + rPoI)/n - (,p2 + 2A)/m 

- rPoim + rPoonm + ,ponm + (rPOI - ,pl)mm, 
(2.13b) 

R2 = - (,p3 + rP21)/n + ,pim + rP221m 

- rP20nm - (,p2 + 2A)nm - (rP21 - ,p3)mm. 
(2.13c) 

In Eqs. (2.12), the scalars a,/3,Y,A,p"v,p,U,€,1',K,1T are NP 
spin coefficients, and in Eqs. (2.13), ,pA (A = 0, ... ,4), rPij 
(i,j = 0, ... ,2) are, respectively, components of the Weyl and 
tracefree Ricci spinor and A is the curvature scalar. 

We then give transformations of rand R corresponding 
totheSL(2,C) action on null frames. IfSESL(2,C), then the 
action of S on null frames is given as 

u_SuSt . (2.14 ) 

This action leaves the metric invariant. The connection r 
and the curvature R transform as 

r-srs-I-dSS- I, 

R_SRS-I. 

(2.1Sa) 

(2.1Sb) 

Explicit expressions for Eqs. (2.10), (2.1Sa), and (2.1Sb) 
can be found, for example, in Ref. 31. 

Finally we will express Einstein's equations in the NP 
formalism. They are 

(2.16) 

where 1'ij and l' A are the corresponding spinorial compo­
nents of the energy momentum tensor. Thus to obtain a com­
pact formulation we have to separate tracefree Ricci and 
curvature scalar components of R by a "compact oper­
ation," which is exactly multiplication from the right by U. 
We remark that [Eq. (2.1Oa)] Ru is anti-Hermitian, hence 
energy momentum tensors will be represented by anti-Her­
mitian three-form matrices. We give Einstein's equations for 
vacuum (V), vacuum with cosmological constant (V + A), 
and electrovacuum (EV) cases in the NP formalism for both 
component and matrix (compact) form. 

(a) Vacuum: In the NP formalism we have rPij = A = O. 
The corresponding equations in compact notation are given 
as 

Ru=O. (2.17) 

TABLE I. Einstein's equations for vacuum, vacuum with cosmological 
constant, and electrovacuum in the Newman-Penrose formalism: compo­
nent form and compact form. 

Vacuum (V) 

Vacuum with t/Jij = 0 A = Ao 
cosmological 
constant (V + A) Ao constant 

Electrovacuum t/Jij = 2kt/J; ¢>} A = 0 
(EV) 

t/J;'s given by Eqs. (2.20) 
Maxwell equations by 
Eqs. (2.21) 

Aoconstant 

RiT - 2kiTt/Jtut/JiT = 0 

t/J given by Eq. (2.24) 
Maxwell equations by 
d(ut/JiT) = 0 
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(b) Vacuum with cosmological constant (Einstein space): 
In the NP formalism Einstein equations are rPij = 0 and 
A == Ao, where Ao is a constant. The corresponding equations 
are given in compact form as 

Ru + AoUO'U = 0, (2.18) 

where Ao is a constant. 
(c) Electrovacuum: In the NP formalism we have 

(2.19) 

where k is the gravitational constant and the rPi'S are given in 
terms of the Maxwell tensor FJ-LV as 

rPo=Fpv/l"mv, 

rPl = !Fl"v(ll"nV + mpmV), 

(2.20a) 

(2.20b) 

rP2 = Fpvml"nv (2.20c) 

(recall that I = II" dxl", n = nl"dxl", and m = ml"dxP in a co­
ordinate basis), and the rP/s satisfy Maxwell's equations: 

DrPl - 8rPo = (1T - 2a)rPo + 2prPl - KrP2, (2.21a) 

DrP2 - 8rPi = -ArPo + 21TrPl + (p - 2€)rP2' (2.21b) 

OrPl - i::J.rPo = (J1- - 2y)rPo + 21'rPl - UrP2, (2.21c) 

OrP2 - i::J.rPl = - vrPo + 2J1-rPl + (1' - 2(3)rP2' (2.2Id) 

where D'YJ = II" al"'YJ, i::J.'YJ = nP ap'YJ, and o'YJ = mpal"'YJ for a 
scalar 'YJ. For the purpose of formulating these equations in a 
compact form, we define the Maxwell two-form as 

Y = F + i*F = - rPl (In - mm) - rPonm + rP2/m, 
(2.22) 

where F = Fl"v dxl" dxv and * F is the Hodge dual of F, i.e., 
*F = !€pv a{3 Fa{:J dxl"dxv. 

Then the Maxwell equations are simply dY = O. Now 
we can give electrovacuum Einstein equations in compact 
form as30 

Ru - 2kurPt O'rPu = 0, 

where k is the gravitational constant, and 

We write the Maxwell two-form as 

1Y = O'rPu, 

1:7 = - urPt 0', 

(2.23) 

(2.24) 

(2.2Sa) 

(2.2Sb) 

where 1 is the 2 X 2 identity matrix and Y is the complex 
conjugate of Y. Then Maxwell equations are 

d(O'rPu) = O. (2.26) 

We summarize these results in Table I. 

III. CARTAN IDEAL FOR EINSTEIN'S EQUATIONS 

Cartan's geometric theory of partial differential equa­
tions (PDE's) essentially consists of the description of a 
PDE as a differential ideal 1 (equivalently, an exterior differ­
ential system) on a manifold N. Then an integral manifold of 
1 will be the pair (M,f), where M is a manifold and f 
M _N is an embedding such thatf*a i = 0, for a; in the 
ideal 1. The differential system is said to be completely inte­
grable if f(M) is a submanifold of N. The terms, integral 
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submanifold or regular integral manifold, will also be used 
for such integral manifolds, and the term regular embedding 
will describe corresponding embeddings. 

We recall that4 systems ofPDE's can be represented as 
systems of homogeneous p-form equations (PDE's in the 
form of exterior differential equations) by possibly introduc­
ing new variables. We describe N to be a manifold with local 
coordinates consisting of all independent and dependent var­
iables in the PDE's and auxiliary variables introduced in the 
previous step. Local coordinates of M will consist of inde­
pendent variables. We then define the forms a; on N such 
that their restriction to M gives the PDE's we started with, 
i.e., for the embeddingf M - N,f*a; = 0 gives our PDE's 
in the form of exterior differential equations. We remark 
that, iff*a; = 0, thenf* (~;5;a;) = 0 also for forms 5; on 
N. Hence any form in the differential ideal 1 = {a;} generat­
ed by the a i vanish when restricted to M. Therefore we can 
conclude that it is rather the ideal generated by the a; that 
represents the PDE's. 

We note that different sets of generators may represent 
the same ideal: We define two exterior differential systems 
{aJ and {a;} as algebraically equivalent if they generate the 
same ideal. Then {aJ and {a;} will represent the same 
PDE, hence their integral manifolds will be (possibly differ­
ent) solutions of this PDE. 

The closure of an ideal 1 = {aJ is an ideaIl = {a;,da;} 
obtained, by adjoining to 1, exterior derivatives of its genera­
tors. An ideal and its closure have the same integral mani­
folds sincef*da; = df*a; = O. An idealis closed ifit is alge­
braically equivalent to its closure (equivalently if dl C 1). 
The study of differential systems is concerned mainly with 
regular integral manifolds of closed ideals. 

In this study, our main interest will be the solution gen­
eration using Backlund transformations and we will not be 
interested in the existence and complete integrability prob­
lems. We only note that, for ideals generated by one-forms 
(Pfaff systems), the Frobenius theorem states that the sys­
tem is completely integrable if and only if the corresponding 
ideal is closed.4 For higher-order systems we do not have 
such a complete result,29(b) however, the Cartan-Kahler 
theorem provides (in the real analytic case) a method of 
construction for integral manifolds starting from lower-di­
mensional integral manifolds. We will now express the Ein­
stein equations for various sources (V, V + A,EY) as a dif­
ferential ideal 10n a manifold N. 

We start by describing local coordinates of M (space­
time manifold to be embedded in N) as x"', Ii = 0,1,2,3. 
PDE's in the form of exterior differential equations, repre­
senting structure equations, are given by Eqs. (2.9a) and 
(2.9b), and their integrability conditions, i.e., Bianchi iden­
tities are given by (2.l0a) and (2.lOb). Also Eqs. (2.17), 
(2.18), and (2.23) represent, respectively, Einstein's equa­
tions for V, V + A, and EY fields. Dependent variables con­
sist of the components of the metric (in fact coordinate com­
ponents of the tetrad frame) of the connection of the 
curvature, and of the physical fields, for the nonvacuum 
case. They will constitute, together with xi', local coordi­
nates of N. We will construct for V, V + A, and EY, a closed 
Cartan ideal with generators {a;} such that, forf M _ Nan 
embedding,J*a; = 0 gives the corresponding structure and 
Einstein equations. To be precise, lis two sided, and includes 
complex conjugates of scalar forms, hence complex conju­
gates and Hermitian conjugates of matrix forms. We will 
give for each case ( V, V + A, and EY) two algebraic equiva­
lent sets of generators denoted by generating set A andgener­
ating set B. 

Generating set A: This generating set defines connection 
and curvature forms and gives Einstein's equations. We will 
use this generating set to obtain a prolongation of 1 that will 
be used for constructing Backlund transformations. 19 

(aj Vacuum: 1 = {a l ,a2,a3,a4 }, where 

a l =du+ ru- urt , 

a2 = dr + rr - R, 

a3 =Ru, 

a4 =dR -Rr+ rR. 

(3.1 ) 

(3.2) 

(3.3 ) 

(3.4) 

We note that dim N = 58 since we have 10,24, and 20 varia­
bles to describe the metric, connection, and curvature, re­
spectively. Also we remark that da l = a 3 + a 3+ and da 2 

= a 4 , hence 1 is closed. 
(bj Vacuum with cosmological constant: 

1 = {a l ,a2,a3,a4}, where aI' a2' and a 4 are given by Eqs. 
(3.1), (3.2), and (3.4), respectively, and 

a3 = Ru + Aoua-u, (3.5) 

where Ao is a constant. The dim N is still 58. We remark that 
since ua-u is anti-Hermitian, da l Cl, and, using Eq. (2.86), 
we obtain 

da- =:al + rt a- - a-r. (3.6) 

TABLE II. The generating set A and generating set B for the Caftan ideal of Einstein's equations for vacuum, vacuum with cosmological constant, and 
electrovacuum. 

Generating set A 

Generating set B 

Vacuum 

a) =du+ ru-urt 
a2 =dr+rr-R 
a3 =Ru 
a4 =dR -Rr + rR 

a)=du+ru-urt 

a 3 = (dr+rou 
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Vacuum with cosmological constant 

a) =du+ ru-urt 
a2 =dr + rr-R 
a3 = Ru + A.oUUU 
a4 =dR -Rr+ rR 

a) =du+ ru-urt 

a 3 = (dr + rou+A.oUUU 

Electrovacuum 

a) =du+ ru-urt 
a2 =dr + rr-R 
a3 = Ru - 2ku¢tu¢u 
a4 =dR -Rr+ rR 
as =d(u¢u) 

a)=du+ru-urt 
a 3 = (dr + rou - 2ku¢tu¢u 
as =d(u¢u) 
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Then, it can be checked that da3 Cl, hence I is closed. 
(c) Electrovacuum: 1= {a l,a2,a3,a4,aS}' where a l,a2, 

and a4 are given by Eqs. (3.1), (3.2), and (3.4), respective­
ly, and 

a3 = Ru - 2kut/Jt ut/Ju, 

as = d(ut/Ju), 

(3.7) 

(3.8) 

where k is the gravitational constant and t/J is given by Eq. 
(2.25), and we note that ut/Ju is proportional to the identity 
matrix. For EY fields, dim N = 58 + 6 = 64. Using Eqs. 
(3.6) and (3.8) it can be checked that da3 Cl, hence I is 
closed. 

Generating set B: In this generating set, we omit the de­
finition of the curvature, hence the Bianchi identities, then 
dimension of N is considerably reduced. This generating set 
will give a prolongation of I that has been proposed for in­
verse scattering problems. 16.18.19 

(a) Vacuum: 1= {a l ,a3}, whereal is given byEq. (3.1) 
and 

a 3 = (dr + rnu, (3.9) 

than dim N = 38, and again it can be seen that I is closed. 
(b) Vacuum with cosmological constant: 1= {al,a3}, 

where a I is given by Eq. (3.1) and 

a 3 = (dr + rnU+AoUUU, (3.10) 

also dim N = 38 and I is closed. 
(c) Electrovacuum: I = {a l,a3,aS}' where a l and as are 

given by Eqs. (3.1) and (3.8) and 

a 3 = (dr + rnu - 2k(ut/Jt ut,6u). (3.11) 

In this case, dim N = 38 + 6 = 44, and I is closed. 
We present both sets of generators for V, V + A, and EY 

in Table II. 

IV. PROLONGATION OF THE CARTAN IDEAL FOR 
EINSTEIN'S EQUATIONS 

Prolongation of an ideal I in a manifold N is an ideal I ' 
containing I, in a fiber bundle N' over N. If 1T: N' ---+ N is the 
projection, we construct I ' by lifting the generators {a j } of I 
toN' and by adding new generatorswA; thatisI' is generated 
by {1T*a i'W A }. In this construction the W A 's are not of the 
formwA = dOB,forOBEl'. Then if I' = {1T*aj>wA}isclosed, 
we have a nontrivial prolongation of I, and the POE we 
started with is said to have a prolongation structure.S-7.I3.16 

If (M, f')'/': M ---+ N' is an integral manifold of I', then 
f'*(1T*a j ) = 0 andf'*wA = O. Therefore (M,1Tof') is an in­
tegral manifold of I with additional equations given by f*w A 

= 0 also solved. Furthermore,1O for the nontrivial pro­
longed ideal I' constructed as above, the maximum-dimen-
sional regular integral submanifolds of I and I ' are the same. 
Therefore, if I is a completely integrable system, its prolon­
gation I' is also completely integrable.4 

In the prolongation process of an ideal representing a 
POE, we are interested in finding additional forms that are 
linear in fiber variables. In these cases, they represent "asso­
ciated linear equations" for original POE's. In any case, pro­
longation forms are useful whenever they represent equa­
tions easier to solve than the original POE's. Although the 
term "associated linear equation" has a special meaning in 
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inverse scattering problems, we will use the term "associated 
equations" to designate the equations represented by f'*w A 

=0. 
In the following sections we will give two different pro­

longations of the Cartan ideal constructed in Sec. III for V, 
V + A, and EY field equations. The first .~onstruction will 
give the linear equation proposed to be useful in the inverse 
scattering approach, the second will lead to Backlund trans­
formations. 

A. Prolonged Ideals using generating set B 

In this section we construct a prolongation of I using 
generating set B given in Sec. III. In each case ( V, V + A,EY) 
associated linear equations are formally the Rarita­
Schwinger equations, and fiber variables admit a transfor­
mation that leave the associated equations and the ideal in­
variant. We give the prolonged ideals as follows. 

(a) Vacuum: I' = {a l,a3'w}, where a l,a3 are given by 
Eqs. (3.1), (3.9), and 

(4.1 ) 

where \{I is a complex vector one-form. Using Eqs. (3.1), 
(3.6), and (2.8b), we find 

dw = ~I (d\{l + r\{l) + ~ \{I + rt w, 
hence I' is closed. 

(4.2) 

The transformation 

\{I ---+ \{I + (d + nil', (4.3) 

where II' is an arbitrary zero-form vector, leaves W invariant 
(modulo I). 

(b) Vacuum with cosmological constant: 
I' = {al,a3,wt>w2}' wherea l ,a3 are given by Eqs. (3.1) and 
(3.10) and 

WI = u[ (d + n \{II + J.lU\{l2], 

W2 = u[ (d - rt ) \{I2 + J.lu\{l tl, 
( 4.4a) 

(4.4b) 

whereJ.l2 =Ao and \{II and \{I2 are one-form vectors. Using 
Eqs. (3.1), (3.6) and (2.8b), we find 

dW I = ~I (d\{ll + r\{ll + J.lU\{l2) - J.lua l \{I 2 + ~ \{II 

+ rt WI + J.lUw2, (4.5a) 

dW2 = a I (d\{l2 - rt \{I2 + J.lU\{lI) - J.lU~ I \{II 

+ aj\{l2 + J.lUW 1 - rW2' (4.5b) 

hence I' is closed. It can also be checked that the transforma-
tion 

\{II---+\{II + (d + ntpl + J.lUtp2' 

'1'2---+'1'2 + (d - r t )tp2 + J.lUtpl' 

( 4.6a) 

(4.6b) 

where 11'1,11'2 are arbitrary zero-form vectors, leaves the ideal 
invariant. 

(c) Electrovacuum: I' = {a\la3,aS,wI'w2}, whereal,a3, 

and as are, respectively, given by Eqs. (3.1), (3.11), and 
(3.8), and 

WI = u[ (d + n\{ll + J.lt,6u'l'z]' 

W2 = q[ (d - r t )'I'2 + J.lt/Jtu'l'd, 

(4.7a) 

(4.7b) 

whereJ.l2 = - 2k, \{II and '1'2 are one-form vectors. Using 
Eqs. (3.1), (3.6), (3.8), (2.8b), and (2.8c), we obtain 
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- -t 
d(i)1 =al(d'lll + r'll\) +a3 '11 1 

+ /-laS 'II2 + rt(i)1 + /-lUtP(i)2' 

d(i)2 = a l (d'll2 - r t 'll2) + aI'II2 

- /-laI 'III + /-liTtPt(i) 1 - r(i)2' 

hence [' is a closed ideal. The transformation 

'III~'III + (d + r)q?1 + /-ltPiTq?2' 

'112~'II2 + (d - r t )q?2 + /-ltPtUq?1 

leaves the ideal invariant. 

( 4.8a) 

(4.8b) 

(4.9a) 

(4.9b) 

Equation (4.1) was proposed as an associated linear 
equation for vacuum Einstein equations by Julia l

& and 
Chinea, 16 and is expected to be useful in finding solutions of 
Einstein's equations by inverse scattering technique. For 
space-times admitting symmetries, inverse scattering is re­
duced to two dimensions, and can be solved, II-IS but in the 
general case, application of the inverse scattering technique 
to general relativity is an open problem. The results of this 
section are summarized in Table III. 

B. Prolonged Ideals using generating set A 

Prolonged ideals described in this section will be used to 
find Backlund transformations. For notational convenience, 
we introduce the differential operator lO as 

lO1] = d1] + r1] + ( - 1) p1]rt, (4.10) 

for any p-form 1]. We give the prolonged ideals. 
(a) Vacuum: [' = {a1,a2,a3,a4,(i)I,(i)2}' where ai' a2, a3, 

anda4 are given by Eqs. (3.1), (3.2), (3.3), and (3.4),re­
spectively and 

(i)1 = m + (i)iT + «(i)iT) t, (4.11) 

(4.12 ) 

where t is a Hermitian and (i) is a sl{2,C)-valued (traceless) 
one-form. We then obtain 

- - t t t d(i)1 = a2t + ta2 - r(i)1 - (i)lr + (i)2 + (i)2' (4.13 ) 

d(i)2 = a 2(i)iT + (i)iTai + a3(i) t 

(i)2 = RI + lO{(i)iT) - XI' 

We write Xl as 

XI = -/-loBo - AoBl' 

where Ao, /-lo are constants, and 

Eo = iTuiT, 

E I = iTut + iTtiT + tuiT. 

(4.15 ) 

(4.16 ) 

( 4.17) 

(4.18 ) 

We note that XI is anti-Hermitian, hence Eq. (4.15) ex­
presses thatd(i)1 C[', and we need tocheckonlyd(i)2C['. We 
will use the following forms of Eq. (4.11): 

dt = (i)1 - rt + trt - (i)iT + iT(i)t, (4.19) 

ii = '%il + rtt - tr + (i)tU - U(i). (4.20) 

In the following (i.e., for V + A and EV) the calcula-
tion of exterior derivatives will be given, mod [', since com­
plete expressions become increasingly lengthy. We can ob­
tain 

dBo = - riTuiT + iTuiTrt (mod /'). 

dBI = - niTul + iTtiT + luiT) + (iTcii + ala + tua)r t 

- (i)auiT + aua(i) t (mod [' ) . 

We rewrite them as 

DBo = 0 (mod ['), 

lOBI = 0/,.1,0) [(i)RiT - Ra(i)t] (mod /'). 
Therefore, 

lOX I = - (i)RiT + RiT(i) t (mod ['). 

We now obtain d(i)2 as 

(4.21 ) 

(4.22) 

(4.23) 

(4.24) 

d(i)2 = - lOXI + RiT(i)t - (i)Ra (mod /'), (4.25) 

and Eq. (4.24) implies that d(i)2 C/'. 
(c) Electrovacuum: I = {a (7a2,a3,a4,aS,(i)I,(i)2,(i)3,(i)4}, 

where a(7a2,a3,a4, and (i)1 are given by Eqs. (3.1), (3.2), 
(3.7), (3.4), (3.8), and (4.11), respectively. We define 

(i)2 = Rt + lO«(i)iT) - X I' (4.26) 
where 

+ (i)aI + a4t + R(i)1 - r(i)2 + (i)2r t, (4.14 ) XI = Ao(t/J,q?) + Ao(q?,t/J) + Ao(q?,q?) + A I (t/J,t/J), (4.27) 

hence [' is closed. 
(b) Vacuum with cosmological constant: 

[' = {al,a2,a3,a4,(i)I,(i)2}, where ai' a 2, a3, and a4 are given 
by Eqs. (3.1), (3.2), (3.5), and (3.4), respectively. The first 
prolongation form (i)1 will be the same as the one given for 
the vacuum case, i.e., (i)1 is given by Eq. (4.11). The second 
prolongation form will be obtained by adding a source term 
to the right-hand side ofEq. (4.12), i.e., 

where 

Ao(u,v) = 2k [auto-viT], (4.28) 

AI(u,v) = 2k [iTuto-vt + (jut'iva + tuto-va]. (4.29) 

In Eqs. (4.28) and (4.29) and throughout Sees. IV and V, u 
and v replace either tP or q?, where tP is given by Eq. (2.24) 
and q? is a SL(2,C)-valued zero-form (whose components 
are additional field variables). 

TABLE III. Prolongation of the Cartan ideal of Einstein's equations using generating set B for vacuum, vacuum with cosmological constant, and electro­
vacuum. 

Vacuum 

a, = du+ ru - urt 

a3= (dr+ rnu 

Vacuum with cosmological constant 

a, =du+ ru-urt 

a 3 = (dr + rnu + AoiTuu 

ill, =u[(d+ nlJl, +}LiTIJI21 
ill2 = u[ (d - r t )1JI2 + }LW.l 
where}L2=Ao 
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Electrovacuum 

a,=du+ru-urt 
a3 = (dr + rnu - 2kuq,tuq,u 
as = d(uq,u) 
ill, = u[ (d + nlJl, + }Lq,iTIJI21 
ill2 = u[ (d - r t )1JI2 + }Lq,tUIJI,l 
where}L2 = - 2k 
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TABLE IV.Prolongation of the Cartan ideal of Einstein's equations using generating set A for vacuum, vacuum with cosmological constant and electrova­
cuum. 

Vacuum 

a l = diT + riT - iTrt 

a2=dr+ rr-R 
a 3 = RiT 
a 4 =dR -Rr + rR 

Vacuum with cosmological 
constant 

a l = diT + riT - iTrt 

a2=dr+ rr-R 
a3 = RiT + A.oUuiT 
a4 =dR -Rr+ rR 

WI = Dr + wiT + (wiT)t 

Electrovacuum 

a l = diT + riT - iTrt 

a2=dr+ rr-R 
a 3 = RiT - 2kiTtfNTt/JiT 
a4 =dR -Rr + rR 
as = d(ut/JiT) 
w, = Df + wiT + (wiT)t WI = Df + wiT + (wiT)t 

W 2 = Rt + D(wiT) W2 = Rt + D(wiT) - Xl> where 
X I = -1',jJo - A.,jJ I 
Bo=iTuiT 

W2 = Rf + D(wiT) - XI' where 
XI = Ao(t/J,rp) + Ao(rp,t/J) + Ao(rp,rp) + A (t/J,t/J) 
Ao(u,v) = 2k(iTutiTviT) 

B I = iTat + iT/iT + tuiT 

The remaining prolongation forms are 

W3 = d(Cit/;i + tt/liJ) , 

w4 = d(CiipiJ). 

(4.30) 

(4.31 ) 

Since W3 and W4 are exact and X I is anti-Hermitian, we need 
to check only if dw2 C!'. We also note that Eq. (4.26) and 
( 4.15) differ only in the definition of X I' therefore dW2 will be 
in!' if (4.25) holds with XI given as in (4.27). To obtain 
dAo(u,v) and dAI(u,v), we use d(autcvb) = autdCvb 
+ d(autc)vb - autd(cvb) (where a, b, and c replace either 
uort) andEqs. (3.8), (4.30), and (4.31). We obtain 

d[Ao(u,v)]=2k[iJu t dCiviJ] (modI'), (4.32) 

d [A I (t/l,t/l) ] = 2k [iJt/lt dCit/lt + iJt/lt dt t/liJ 

+ tt/lt dCit/liJ] (mod!'). (4.33) 

Finally using Eqs. (3.6) and (4.20) (and also the fact that 
ut/liJ is proportional to the identity matrix), we write (4.32) 
and (4.33) as 

DAo(u,v) =0 (mod!'), (4.34) 

DAI(t/l,t/l) = -wAo(t/l,t/l) + Ao(t/l,t/l)wt (mod!'), 
(4.35) 

and since Ao(t/l,t/l) = RiJ (mod!') we have verified that 
dW2CI'. 

This completes the second set of prolonged ideals. The 
results of this section are summarized in Table IV. In the 
next section we will give a Backlund transform using these 
prolonged ideals. 

TABLE V. Backlund correspondence for Einstein's equations. 

I = {a,} 
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A I (u,v) = 2k(iTut iTvt + iTutwiT 
+ tutUviT) 

W3 = d(ut/Jt + tt/JiT) 
W4 = d(urpiT) 

V. BACKLUND TRANSFORMATIONS OF EINSTEIN'S 
EQUATIONS 

Backlund transformations are basically methods of gen­
erating new solutions from known solutions of a POE. The 
prolonged ideals that we have constructed in Sec. IV B will 
be used to find such transformations. We describe the proce­
dure as follows: I is an ideal on N (representing a PDE) 
generated by {a;} and I ' its prolongation onN' (fiber bundle 
overN, with projection 1T), with generators {1T*a;,wA}. We 
start with a known solution, i.e., an integral submanifold 
(M, f). Then the construction of!' ensures that (M,J') is an 
integral submanifold of I' withl = ~ I'. We then look for a 
map P: N' ~N' that induces a diffeomorphism of N, then P 
induces a (linear) mapping (P- I )* offorms in N. That is 
1T*a; is mapped to (P- I)*1T*a;, as a linear combination of 
a; 's and w A'S. Ifwe can choose a special form of P, such that 
the ideal generated by {(P- 1 )*1T*aJ is algebraically equi­
valent to I', then (M,Fo f') will be a new solution for the 
POE. Thus P is a Backlund transformation relating two so­
lutions of the POE. If furthermore P can be extended to a 
diffeomorphism on N' then we can describe 
j' = {(P- I)*1T*a;. (P-I)*WA} as prolongated from 
(P -I) *1T*a'j This process is illustrated in Table V. 

A. Construction of Backlund transformations for 
Einstein's equations 

In order to obtain a Backlund transformation, we con­
sider a map P on N', such that iJ~+i, r~r+w, 
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R_R + p, ~ + fP. Such a characterization ensures that 
F induces a diffeomorphism of N'. Then we denote ai 

= (F -I) *1r*aj> and we can find explicit forms of ai by 
simply replacing u,r ,R, tjJ in each a i by their values under F. 
Therefore 

a l = al + Dt + lUU + (lUU)t + (lUt) + (lUt)t, 

a2 = a2 + dlU + lUr + rlU + lUlU - p, 

(5.1 ) 

(5.2) 

a4 =a4 + dp -RlU + lUR -per +lU) + (r + lU)p, 
(5.3 ) 

a3 = a3 + Rt + D(lUU) + D(lUt) + lUUlUt + lUtlUt - XI' 
(5.4 ) 

where 

0, for V, (5.5) 

- (Ao + ,uo)(U + t)(o- + t)(U + t) 
XI = + AoUo-U, for V + A, (5.6) 

2k(u + t) (tjJt + fP t) (0- + t) (tjJ + fP) (u + t) 
- 2kutjJto-r{Ju, for EV; (5.7) 

as =as +d [(o-+t)(r{J + fP)(u + I)] -d[o-tjJu). (5.8) 

We note that a2 gives the definition of p and a4 gives an 
identity, then, to obtain algebraic equivalence, we have to 
express a I' a3, and as as a sum of a/s and lU A'S, by equating 
remaining terms to O. Comparing Eq. (5.1) with Eqs. (3.1) 
and (4.11) we obtain 

a l =a l + lUI' 

lUt + (lUI) t = O. 

(5.9) 

(5.10) 

Now consider three cases. 
(a) Vacuum: Comparing Eq. (5.4) with Eqs. (3.3) and 

(4.12), we have 

(5.11 ) 

(b) Vacuum with cosmological constant: Comparing 
Eqs. (5.4) and (5.6) with Eqs. (3.5) and (4.15), we obtain 

a3=a3+lU2' (5.12) 

D(lUt) + lUUlUt + lUtlUt - X2 = 0, (5.13) 

where 

X2 = - Ao(B2 + B3) - ,uo(BI + B2 + B3), 

with 

(5.14 ) 

BI = uot + utu + Io-u, 

B2 = utt + 10-1 + Itu, 

B3 = ttl. 

(5.15 ) 

(c) Electrovacuum: Comparing Eqs. (5.4) and (5.8) 
withEqs. (3.7), (4.26), (3.8), (4.30), and (4.31), we obtain 

a3=a3+lU2' (5.16a) 

as=as+lU3+lU4' (5.16b) 

D(lUI) + lUUlUt + lUtlUt - X2 = 0, (5.17a) 

d (UfPI + tgiU + t(gI + r{J)I) = 0, (5.17b) 

where 
3 

X2 = L [Ai (r{J,gI) + Ai (gI,r{J) +Ai(gI,gI)] 
i~1 
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3 

+ L Ai (r{J,r{J) , 
i~2 

with 

AI (u,v) = 2k [iTuto-vt + iTuttvu + tuto-vu] , 

A2(u,v) = 2k [iTuttvl + tuto-vt + tuttvu], 

A3(u,v) = 2k [tUttvI]. 

(5.18 ) 

(5.19 ) 

To obtain a Backlund transform for V, V + A, and EV, 
we propose to solve the equations 

lUi = 0, (5.20) 

lUUlUt - X2 = 0, (5.21) 

whereX2isOfor V,andisgivenbyEqs. (5.14) and (5.18) for 
V + A and EV, respectively. 

B. A method of solution for roj = 0, roUro t = X2 

We note that, since lU is defined by Eq. (4.12), it is un­
necessary to consider it anymore as a fiber coordinate, as 
long as we solve for the components. Therefore, the first step 
will be, starting from an arbitrary parametrization of i, to 
solve for the components of lU from Eq. (4.11), i.e., the asso­
ciated equationf*lUi = 0; then to put restrictions either on 
the background or on the components of i such that lUt = 0 
and lUUlUt = X2' for the appropriate value of X2' The equa­
tions for i will be first order, and in general, we will be inter­
ested in simple linear equations that are sufficient to solve 
lUi = 0, lUUlU = X2' We will give general expressions for lU 
with lUt = O. The expression for lUUlU t is cumbersome in the 
general case, but once lU is found, lUUlU t can be obtained by 
simple substitutions for each special type of transformation 
under consideration. 

Solution of lU and the constraint equations completes the 
construction of the Backlund transform. But still we may 
have constraints on the background arising from algebraic 
or overdetermined equations in lUz. 

We now solve lU from the associated equationf'*lU I = 0, 
where lUI = Di + lUU - UlUt : Starting with the following 
parametrization of i and as 

-d3) _ 
- m, 
dl 

lU~ ) 
z n 

-lUo 

lU
4 

) 
2 _ 

4 m, 
-lUo 

(5.22a) 

(5.22b) 

we will solve lU from restriction of lU I [Eq. (4.11) ] on M, i.e., 

dt + ri - irt = - lUU + UlUt . (5.23) 

We write 

di + ri - irt 
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E6) _ mm, 
Fl 

and solve for the components of cu as 

cu6 =!( - 2A2 + E2 - E2 + F2), 

cu~ =! ( - 2A I + E4 - E4 + FI ), 

cu6 =!( - CI + D2 + El + 2E6), 

cu~ =!( - C\ + D2 + EI - 2E6) , 

cui =!(CI +D2+EI), 

cui =D I , 

cui =!( -E4- E4+ Fd, 
cui = - E5, 

cu~ = C2, 

cu~ = !(CI +D2 -EI), 

cu~ = -E3' 

cu~ = - !(E2 + E2 + F2 ), 

where 

(5.24) 

(5.25) 

Al = - Dal + aa2 - 2(y + r)a2 - KC I - KCI + rC2 

+ 'TC2 - ('T + 1f)dl - (r + 1T)dl, 

A2 = - Dbl + ab2 - 2(E + '€)b l + 1TC I + 1fcl - VC2 

- VC2 - ('T + 1f)d2 - (r + 1T)d2, 

CI = 8a l + adl - ral + va2 + uCI + PCI 

+ (ji- 2r)dl + Adl + ('T + r)d4, 

C2 = 8b l + ad2 + [2(a + p) - r]bl + vb2 - ACI 

- jici + (ji + 2y)d2 + Ad2 - vd3 - vd4, 

DI = 8a2 +Ddl - Ka l + [- 2(a +p) + 1T]a2 + UC2 

+ PC2 - (2'€ + p )d l + udl + Kd3 + Kd4, 

D2 = 8b2 + Dd2 - Kb l + 1Tb2 - AC2 - jiC2 

+ (2E - p)d2 - ud2 -1Td3 -1fd4, 

El = - DC I + aC2 + 1fa l - va2 - Kb l + 'Tb2 (5.26) 

- 2€c l - 2yc2 - ('T + 1f)d3 - (r + 1T)d4, 

E2 = 8c I + ad3 - jial + pbl + (2{3 - r)cl 

+ VC2 - vdl + 'Td2 + jid3 + Ad4, 

E3 = Del + ad4 - Aa l + ubi + (2a - 'T)c l + VC2 

- Vdl + 'Td2 + Ad3 + Lu + 2(r - y) ]d4, 

E4 = 8c2 + Dd3 - jia2 + pb2 + ( - 2a + 1T)C2 

- 1fdl + Kd2 - pd3 - ud4 - C1K, 

E5 = De2 + Dd4 - Aa2 + ub2 + ( - 2{3 + 1f)C2 -1fdl 

+ Kd2 - ud3 + [2(,€ - E) - p]d4 - C1K, 
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E6 = M3 - 8d4 + (p - p)Cl + (J.t - ji)C2 - Adl 

+ jidl + ud2 - pd2 + 2(a - P)d4, 

FI = ~dl - 8d l + (p - p)al + (J.t - ji)a2 - 2ad l 

+ 2ad 1 + pd3 - pd3 + ud4 - ud4, 

F2 = ~d2 - 8d2 + (p - p)bl + (J.t - ji )b2 + 2{3d2 

- 2{3d2 - J.td3 + jid3 - Ad4 + Ad4· 

We then write 

- (-N cut = 
P 

where 

M = [cu6a2 + cu: C2 - cu~al - cuicl] In 

+ [cu6dl + cuI d4 - cu6al - cui cd 1m 

+ [cu6dl + cu: d3 - cu~al - cui cd 1m 

+ [cu~dl + cuid4 - CU6a2 - cuic2]nm 
2- 2- 4 4 + [cuodl + CUI d3 - cuOa2 - CUI C2]nm 
3- 3- 4 4 

+ [cuodl +culd3-CUodl-culd4]mm, 

N = [CU~C2 - cu6b2 - CU~CI + cu~bl]ln 
+ [CU~d3 - cu6d2 - CU~Cl + cu6bdlm 

1- 1- 4 4 
+ [cu2d4-CUod2-CU2Cl +cuobd lm 

+ [CU~d3 - CU~d2 - CU~C2 + cu6b2]nm 
2- 2- 4 4 + [cu2d4 - cuOd2 - CU2C2 + cuOb2] nm 
3- 3- 4 4 + [cu2d4 - cuOd2 - cu2d3 + cuOd2]mm, 

(5.27) 
p = [CU6C2 + cu: b2 - CU~CI - cui bl ] In 

+ [cu6d3 + cu: d2 - CU6Cl - cui bd lm 

+ [cu6d4 + cui d2 - CU~Cl - cui bd 1m 

+ [CU~d3 + cuid2 - CU6C2 - cui b2] nm 

+ [CU~d4 + cuid2 - CU~C2 - cuib2]nm 

+ [cu6d4 + cui d2 - CU~d3 - cui d2] mm, 

Then, to construct a Backlund transformation we start 
with a parametrization of t as given in Eq. (5.22a), then 
insert these parameters in Eq. (5.26), and using (5.25) we 
determine the corresponding parametrization of cu, i.e., we 
have cu = cu (t) . We then insert these expressions in (5.27) to 
solve cut = O. The next section illustrates this method. 
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C. Examples for Blcklund transformations of Einstein's 
equations 
1. Example 1 (generalized Kerr-Schild transformation) 

Generalized Kerr-Schild transformations constitute an 
important example for Backlund transformations of Ein­
stein's equations. An extensive review of Kerr-Schild trans­
formations can be found, for example, in Kramer et al. (see 
Ref. 23, Chap. 28). Generalized Kerr-Schild transforma­
tions are those with nonftat background, and they will be 
studied in detail in Sec. VI. 

We choose t as 

(S.28) 

i.e., we let I_I, n-n + VI, and m-m. Then from Eq. 
(S.2S), by taking b l = V, we obtain 

w~ =HDV+2(€+E)V+ (p-,o)V], 

w~ = 8V + [2(a + 13) - 1'] V, (S.29) 

w~ = - uv, 
w~ = -pv, 

and we can see that, ifK = 0, thenwt = 0, hence Eq. (S.lO) is 
satisfied. Then we give 

wuwt = (~ ~) , 
where 

s= V{ - !(p +,o)DV - (€ + E)(p +.0) V 

+ ~(p2 + .02) V - auV}/mm. 

(S.30) 

(S.31) 

We solve the remaining constraints for V, V + A, and EV as 
follows. 

(a) Vacuum: We have 

wifwt = O. 

Therefore, K = 0 and 

- !(p +,o)DV - (€ + E)(p +,o)V 

+ !(p2 + .02) V - auV = 0 

solve the constraints. 

(S.32) 

(S.33 ) 

(b) Vacuum with cosmological constant: We have 

(S.34a) 

where X2 is given by Eq. (S.2Oc). We note that tat = tat 
= tat = tat =0 for any a, and we obtain, from Eq. (S.14), 

(
Imm 0

0
), 

- X2 = 3J-loV 0 (S.34b) 

Hence, using Eq. (S.30), we can see that K = 0 and 

-!(p+,o)DV- (€+E)(P+,o)V 

+ !(p2 + .02) V - auV = - 3J-loV (S.3S) 

solve the constraints. 
(c) Electrovacuum: The constraints are given by Eqs. 

(S.27a)-(S.27e). We start with 

(S.36) 

whereX2 is given by Eq. (S.2Sc). We note that A2 (t;6,t;6) ==0. 
Then 
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AI(u,v) = 2kV( - uI~llmm ~) 

and using (S.17b) we have 

- !(p +,o)DV - (€ + E)(p +.0) V 

+ ! (p2 + .02) V - au V 

+ 2k(t;6lfPI + fPlt;61 + fPIlPI) = O. 

Then we observe that 

(5.37) 

(S.38) 

Uut + tuif = - uoVlm, (S.39) 

hence we take lPo = 0 to satisfy Eq. (S.17b). Therefore, 
K = t;6o = lPo = 0 and Eq. (S.38) solve the constraints. 

2. Example 2 

As a second example of Backlund transformations, we 
take the two-parameter transformation, which includes the 
GKS as a limit. This example is as follows: 

t= (!Z ~ ~ I, (S.40) 

i.e., we let I-I, n-n + VI, and m_m + ZI. For this exam­
ple, we will construct only the Backlund correspondence, 
the solution of the associated equation will be presented else­
where. To illustrate the Backlund construction process, we 
give the results in detail. We first set bl = Vand CI = Z. We 
also take K = O. Then from Eq. (S.26), we obtain the non­
vanishing terms as 

A2 = -DV - 2(€+ E)V + 1TZ +iTZ, 

CI=pZ+uZ, 

C2 = 8 V + (2a + 213 - 1') V - AZ - p,Z, 
EI = -DZ-2EZ, 

E2 = 8Z + (213 - 1')Z + pV, 

E3 = ~Z + (za - r)Z + aVo 
E6 = (p -,o)z. 

(S.41 ) 

We already have wi = w~ = wi = w~ = O. 
(S.41) in Eq. (S.27) we have 

Inserting Eq. 

M=O, 

N = - wiZln + ( - w~Z + w~ V) 1m 

+ ( - wiZ + w~ V)lm, 

p = ( - w~Z)lm + ( - w~Z)lm, 

Q = w~Zlm + w~Zlm. 
We solve wt = 0 by taking (for Z #0) 

CI - HI = E2 = E3 = 0, P - .0 = O. 

Therefore we have (for Z #0) 

DZ+ (2€+p)Z+uZ=0, 

8Z+ (213-1')Z+pV=O, 

~Z + (2a - r)Z + aV = O. 

Nonvanishing components of ware 

w~ = !(DV + 2(€ + E) V - 1TZ - iTZ), 

w: = (,oZ + aZ), 
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(S.4S) 
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TABLE VI. Construction of Biicklund correspondence for the examples given in Sec. V c. 

Vacuum 
Vacuum with cosmological 
Constant Electrovacuum 

Example 1 
OKS 

K=O K=O K=O, r/Jo=O 

I_I 
-!(p + p)DY - (e + e)(p + p)Y 
+ !(p2 +p2)Y - uuY=O 

- !(p +p)DY - (e +e)(p +p)Y 
+ !(p2 + ,02) Y - O'uY = - 3#0 

- !(P + p)DY - (E + E)(p + p)Y 
+ !(p2 +p2)Y _ O'uY 

n_n + VI 
m-..m 

Example 2 
I_I 

+ 2k(r/Jl V>1 + V>I r/JI + IPI V>I) = 0 

K=O, p-p=O, #0=0 

n-+n + VI 
m-»m+Z/ 

K=O, p-p-O 

DZ+(2E+p)Z+uZ=0 
;5z + 0/:1- r)Z + pY = 0 
f]Z + (m -r)Z +uY=O 

DZ+ (2E+p)Z+uZ=O 
;5z+ (,lP-r)Z +pY=O 
tJZ+ (m-r)Z+aY=O 

hence liJUliJ t =0. We note that tat = tat = tat = tat = 0 for 
this transformation also with a an arbitrary zero-form ma­
trix. Then for vacuum fields all constraints are satisfied iden­
tically, but for vacuum with cosmological constant we also 
need Po = 0 to construct a Backlund correspondence. 

We summarize these results in Table VI. 

VI. GENERALIZED KERR-SCHILD TRANSFORMATION 

The generalized Kerr-8child (GKS) transformation 
was given in Sec. V as an example of Backlund transforma­
tions of Einstein's equations. We started with the parametri­
zation of t given by Eq. (5.28) and we found that if 
K tPo = 0 for the background (known solution) and if t 
satisfies Eq. (5.33), (5.35), or (5.38) (depending on the 
source) we have a Backlund transformation. To find a new 
solution we have to solve the associated equations given in 
Table III for various cases. 

As an alternative approach to the study of the GKS 
transformation, we use the Newman-Penrose (NP) formal­
ism in component form (see Table I). Starting from trans­
formation of the tetrad vectors of the form I-+i, n-+n, 
m-+iii, where 

i = I, n = n + VI, iii = m, (6.1) 

it is possible to obtain the change in spin coefficients, compo­
nents of the tracefree Ricci spinor, Weyl spinor, and scalar 
curvature in an arbitrary background (without assuming 
any symmetry or any simplifying choice of the tetrad24

). By 
a simple study of these expressions it can be seen that K = 0 is 
a linearity requirement for the transformation of the trace­
free Ricci spinor and the curvature scalar. Furthermore, it 
can be seen that Eqs. (5.33) and (5.35) are in fact one of the 
field equations for Vand V + A, similarly Eq. (5.38) is a 
field equation for EV. Therefore if K = 0, the solution of the 
associated equations in compact NP formalism is equivalent 
to solving the transformation equations in component form. 
The integrability of the solutions is guaranteed by construc­
tion of the prolonged idea1 in the compact NP formalism. 

In the following we will restrict ourselves to the case 
K tPoo 0 and give in Sec. VI A a brief review of Kerr­
Schild metrics, the transformation of NP quantities, and 
some algebraic properties that follow. In Sec. VI B we give 
the mixed component of the Einstein tensor and we also ob-
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serve that (since Ip is geodesic) the field equations for the 
new solution are linear in V. We then consider vacuum to 
vacuum and vacuum to electrovacuum transformations (in 
fact, we need only a part of the transformation equations to 
obtain the following results). The main result is that it is not 
possible to find algebraically general, asymptotically ftat 
vacuum or electrovacuum metrics by applying the GKS 
transformation to a vacuum metric. This restriction is due to 
the fact that field equations are overdetermined and give a 
constraint on the background. 

A. GKS transformation: Review and transformation 
properties 

Kerr-Schild (KS) metrics32 have a special importance 
in the theory of general relativity. Einstein field equations 
constructed from these metrics are equivalent to the linear­
ized field equations with ftat background.33 Most of the well­
known metrics are in this class. These are the Schwarz­
schild, the Reissner-Nordstrom, the Kerr, the Kerr­
Newman, the Vaidya, p-p waves, and the de Sitter­
Schwarzschild metrics. All twisting metrics in this class are 
obtained from the nontwisting metrics by a complex transla­
tion.33

•
34 This is due to the fact that the field equations are 

Lorentz covariant and linear, hence the complexification 
generates the twisting solutions. In other words, the field 
equations are also invariant under complex Lorentz trans­
formations. 

The generalized Kerr-Schild (GKS) metrics are those 
with nonftat background. Until now, the space-times de­
scribed by these metrics (GKS space-time) were considered 
only for vacuum35 and pure radiation36•37 cases. Xanthopou­
los38 has shown that the vacuum field equations correspond~ 
ing to the GKS metrics are equivalent to the linearized field 
equations in the background geometry. Taub37 was interest­
ed in the pure radiation and cosmological solutions and us· 
ing the GKS metrics he found some new solutions. In all the 
studies mentioned above the background metric is algebrai­
cally special. In this work we make no assumption on the 
background, and we find that there are in fact algebraic gen­
eral backgrounds, admitting the GKS transformation. We 
now give the transformation of NP quantities. 

The transformation of the spin coefficient can be either 
obtained by comparing with liJ [Eq. (5.25)] or calculated 
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directly from the expressions for the derivatives of the tetrad 
frame (i.e., definition of connection), making use of 

D=D, E A- VD, 8=8, (6.2) 

where (D,A,8) and (D,E,8) are derivative operators defined 
in Sec. II, for background and transformed spaces, respec­
tively. In the following all symbols represent scalar quanti­
ties and - over a letter denotes the corresponding variable in 
the transformed space. We will also denote the background 
by (M,g) and the transformed space by (M,g), wheregandg 
denote the corresponding metrics. We recall that we restrict 
the background to the case K = 0, tPoo = 0, and we give the 
transformations of spin coefficients as 

if = 0, U = 0', P = p, 

€ = €, r = r, ir = 17", 

A=...t+uV, /l=/-l+pV, 

a =a, P=/3, 
r= y+ !(D + 2E' +p -.0) V, 

v = v + (;5 + 2a + 2,8 - 7 -17") V. 

(6.3) 

In Eq. (6.3) and from now on in this section, a, /3, y, ...t, /-l, v, 
P, 0', €, 7, K, 17" will denote the NP spin coefficients. 

Then the transformations of the tracefree Ricci spinor, 
curvature scalar, and Weyl spinor can be obtained from NP 
equations22 by direct substitution of Eq. (6.3) and making 
use of Eq. (6.1) as 

~ij = tPij + Sij' i,j = 0,1,2, 

A=A+S", 

~j = "'j + Sj, i = 0,1,2,3,4, 

where the Sy's, Sn' and S; are 

Soo=O, 

SOl =0, 

(6.4) 

(6.5) 

(6.6) 

(6.7a) 

(6.7b) 

S02 = O'DV + "'0 V + 0'[2(€ + E') + (p -.0)] V, (6.7c) 

2S1l = !D2V + ~(€ + E')DV + [D(€ + E') 

+ (€ + E')2 + O'U + p.o - p2 - p2] V, (6.7d) 

6SA = -!D2V-~(€+E')DV+ (p+.o)DV 

+ [-D(€+E') - (€+E')2 

+ 2(€ + E')(p +.0) + O'U - p.o] V, (6.7e) 

SI2 = ~8(D+ 2€+ 2E'+p -p) V + 0';5 V 

+ ["'I + 20'(a + In - 0'1' - p7 

+ !('a +/3 - 7)(D + 2€+ 2E'+p -.0)] v, 
(6.70 

S22 = A (p V) + [( £5 - 7 + l:i' + 3,8) 

X (;5 + 2a + 2,8 - 1') + "'2 
-/-leD + 2€ + 2£ +p -.0) 

- p(/-l + y + r) - Xu] V, 

SO=O, 

SI =0, 

3S2 = ~(D+€ +E'+p -.0) 
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(6.7g) 

(6.8a) 

(6.8b) 

X (D + 2€ + 2E' + 3p -.0) V - 20'UV, (6.8c) 

S3 = VDa + !(;5 +p - T)(D+ lE'+p -.o)V 

+ (p + €)(;5 + 2a + 2jj - l' - 17") V 

- (7 + /3)uv + ~a(D + 2€ - P -.0) V, (6.8d) 

S4 = - A(uV) + VD(...t + uV) 

+ ;5(;5 + 2a + 2P l' - 17") V 

- uV(/-l + ji + 3y - r) 
- (...t + uV) (D + 3£ - € + 3p -.0) V 

+ (3l:i' + /3 + 17" - 1') 

X (;5 + 2a + 2jj - l' - 17") V. (6.8e) 

We now give a few results that can be obtained by a 
simple inspection ofEqs. (6.1)-(6.8). 

(a) The transformation of the tetrad basis [Eq. (6.1)] 
shows that there is a subgroup of the local Sl(2,C) transfor­
mations in the background that also leave the transformed 
metric g invariant. This subgroup consists of null rotations 
around II', and boosts in the II' -nl' plane and spatial rotations 
in the ml'-ml' plane.31 Also it can be seen that only the sub­
group consisting of spatial rotations in ml'-ml' plane com­
mutes with the GKS transform. 

(b) Since /1' is a geodesic null vector in (M,g) [i.e., 
II';vl v = 0, where a semicolon denotes the covariant deriva­
tivein (M,g)], and sinceK = il';vml'lv = Ois invariant under 
the GKS transformation, II' is also a geodesic null vector in 
(M,g) (i.e., I,l/vlv = 0), where I denotes the covariant deri­
vative in (Mi). 

( c) If the tetrad frame r' = (I Il ,nl' ,mil ,mil) propagates 
parallely along /1' (i.e., lilT" V,1l = 0) in (M,g) we have 
K = € = 17" = 0. From the invariance of these spin coeffi­
cients we have that T' (i 1l,;,1l ,mil ,mil) propagates parallely 
along III in (M,g) also (i.e., IIlT'vll' = 0). 

( d) The optical scalars 0' and p belonging to the null 
congruence with the tangent vector I Il do not change. 

(e) If III is a principal null direction (pnd) of the Weyl 
tensor of (M,g) then "'0 = 0, and since III is also geodesic, we 
have ~o = 0, thus III is also a pnd of the Weyl tensor in 
(M,g). 

(0 If the geodesic null vector III is a pnd of (M,g) with 
multiplicity 1 (i.e., "'0 = 0, "'I #0, the space-time is called 
algebraically general), then it is a pnd with multiplicity 1 in 
(M,g) also. If III is a pnd with multiplicity 2 (i.e., 
"'0 = "'1 = "'2 # 0, the space-time is called algebraically spe­
cial), then it is a pnd with multiplicity at least 2 in (M,g). In 
other words, if II' is a geodesic null vector and a pnd in 
(M,g), then (M,g) will be algebraically general (special) if 
and only if (M,g) is algebraically general (special), but in 
the case (M,g) is algebraically special (M,g) need not be of 
the same type. 

B. The field equations 

Starting from the expression of the Einstein tensor given 
as 

GIlV = 2tP2zlll iv + It/Joonl'nv + 2tP20mll mv + 2t/J02mll mv 
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+ 2(~11 + 3A)(/ll n" + nll/") 

+ 2(~11 - 3A)(ml'm" + ml'm,,) 

- ~21 (Ill m" + mi,,) - ~12 (/1' m" + mi" ) 

- ~1O(nl'm" + ml'n,,) - ~Ol (nllm" + ml'n,,), 
(6.9) 

and using Eqs. (6.4 )-( 6.8), we obtain for the mixed compo­
nent of the Einstein tensor 

G~ = G~ - 2(SlI - 3SA)~ 

+ 2 [S22 - V2(~00 + Soo) ]/1'1" + 2S00nl'n" 

+ 2S2oml'm" + 2S02ml'm" + 4S 11 (ll'n" + nl'l,,) 

- 2 V( ~oo + Soo) (/I'n" - nl'l" ) 

- 2S2I (ll'm" + ml'l" ) 

+ 2V(~1O + SIO) (ll'm" - ml'l,,) 

- 2S12 (/J.Jm" + mJ.J/,,) 

+ 2V(~01 + SOI)(/J.Jm" - ml'l,,) 

- 2SIO (nl'm" + ml'n,,) - 2SO\(nJ.Jm" + mJ.Jn,,). 
(6.10) 

Thus it can be seen that when II' is geodesic (note that 
S22 - V2~00 is linear for K = 0) and ~oo = 0, G~ is a linear 
functional of V. This is an important property that can be 
used for various purposes: If the background space-time is 
specified then the gravitational field equations become linear 
partial differential equations for V. Another consequence of 
this property follows: If a solution of the Einstein field equa­
tions can be put in the GKS form, i.e., gil" = gl''' + 2VlJ.J/", 
where gl''' , V,II' are all known and if (M,g) has a cyclic coor­
dinate, then any complex translation generates a new solu­
tion of the Einstein field equations. These solutions mayor 
may not be distinct. 

Now we shall study the Einstein field equations, first 
assuming the background space-time is fixed. We recall that 
the transformation of the NP quantities are given for K = ° 
and ~oo = 0. Also, for electrovacuum, ~oo implies ~o = 0, 
hence ~Ol = ~02 = 0. Since Soo = ° we have ~o = ° therefore 
SOl = S02 = ° (in factSol=O). Thus, in the cases under con­
sideration, the backgrounds V and EV satisfy 
~oo = ~O\ = ~02 = 0 and a first set of transformation equa­
tions are given by S02 = SA = 0 (since Soo = SOl = 0). Also 
the equations giving the Backlund correspondence [Eq. 
(5.33) for V and Eq. (5.38) for EV] is equivalent to the 
SI1 + 3SA term. 

We rewrite the transformation of the tracefree Ricci 
spinor and curvature scalar for V, V + A, and EV as 

S02=0, 

6SA =0, 

2S11 = 4k(¢liPI + ipl'jJl + iplqJl)' 

SI2 = 2k(~lqJ2 + ipl¢2 + fPlqJ2), 

S22 = 2k(~2qJ2 + ipi~2 + fP2qJ2)' 

(6.11a) 

(6.11b) 

(6.11c) 

(6.11d) 

(6.11e) 

From (6.11) it can be seen that the solution of V de­
pends crucially on p + P and 0', and the main compatibility 
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problem is in the solution of D V. For 0' = 0, we have a consis­
tent system, and the solution will depend on arbitrary con­
stants only, unless p + 15 = ° (in this case a Vis not specified 
and the solution will depend on an arbitrary function). But 
since K = ° and ~oo = ~O\ = ~02 = 0, then 0' = 0 implies that 
background is algebraically special with "'0 = "'I = ° (Gold­
berg-Sachs theorem23). Also it can be seen that p + 15 = ° 
implies 0' = O. In the following we will be interested in alge­
braic general backgrounds admitting the GKS transforma­
tion, hence we will take O':fO, p + P:f0. We analyze the 
solutions for two cases: (i) S II = 0, and (ii) S II :f O. The first 
case includes V---+V, V---+null EV [¢II = 0 (see Ref. 27)] 
transformations, and the second represent V---+(non-null) 
EV transformations. 

(i) Sl1 = 0: We solveDV from Eq. (6.11c) as 

DV= {UoV, 

where 

(6.12) 

{Uo = (p + p> -I [P2 + 152 - 20'0' - 2(p + p> (E + E)]. 
(6.13 ) 

Then SA = ° is satisfied, but from S02 = 0, we obtain the 
following constraint on the background: 

"'0120' = (p + p> -1(0'0' - p2). (6.14) 

(ii) Sl1 :f0: WesolveDV from Eq. (6.11c). Then using 
S02 = 0, and SA = 0, we obtain 

D { ("'010') + 2p ] 

= [("'010') + 2p j2 + (E + E)[ ("'010') + 2p]. (6.15) 

Using Bianchi identities it can be seen that this condition is 
true whenever Soo = SOl = S02 = So = 0. 

Then V is the solution of 

DV = {UoV + Uo, 

where (Uo is given by Eq. (6.13), and 

Uo = 4k(~lfjl + fjl¢ll + fPlfjl)' 

(6.16) 

(6.17) 

The constraints (6.14) and (6.15) are satisfied in the cylin­
drical class of metrics described by Newman and Tambur­
in039 and in stationary vacuum space-times discussed by 
Kota and Perjes.40 

We now give expressions for c5V and aVo From Eq. 
(6.11d) we obtain 

[(p2 _ O'O')/(p + p> ]c5V + 0'0' V + nv = S12' (6.18) 

where 

n = "'I + (c5 + a + P - r) [(p2 - O'O')/(p + p>] 

+ 20'(a + P) - 0'7 - pr (6.19) 

and 

S _ {O, for V and V + A, 
12 - 2k(¢llfj2 + ipl7P2 + fPlfj2)' for EV. 

Hence we can solve c5V if 

1 (p2 - O'O')2/(p + p> 12 - O'u:fO, 

as 

c5V = {UI V + U I , 

where 
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and 

[ 1 
2 -1 2 

] -I [ P uu ] 
UI = P ~~ -uu -uS12 + p~p S12' 

P P (6.24) 

and, sincep + P=j:.O, we solve AVas 

AV = W2 V - S22' 

where 

(6.25) 

W2 = (p + p) -I [8(a + P -1' + !(;)I) 

and 

+ 8(a + {3 - r + !wl ) + !wl «(;)1 + 3a + 5P - 21') 

+ !w l (WI + 3'11 + S{3 - 2r) + "'2 + ~2 
- (p +p)(r + y) + !(p +p)-I,u(2uu - 3p2 +.02

) 

+ 1I2(p + p) -1P,(2uu - Jjf2 + p2) + (a + p - 1') 

X (a + 3{3) + 2r1' + (a +{3 - r)(a + 3P) (6.26) 

{
a, for V and V + A, 

S22 = 2k{tPip2 + tp2tP2 + tpip2}' for EV. 
(6.27) 

Also tPi and tPi + tpi satisfy Maxwell equations [Eqs. 
(2.21a)-(2.21d)] in (M,g) and (M,g), respectively. Then 
V, in general, can be solved from Eqs. (6.12), (6.18), and 
(6.25) . 

We now return to the constraint equations (6.14) and 
(6.16) and investigate the existence of asymptotically fiat 
solutions. We recall that the behavior of these space-times 
has been studied by Newman and UntF5 and by Exton, New­
man, and Penrose26 for vacuum and electrovacuum fields, 
respectively. Using their results we obtain the following 
theorems. 

Theorem 1: Ifboth (M,g) and (M,g) are asymptotically 
fiat vacuum space-times, then their Weyl tensors must be 
algebraically special. The GKS transform does not preserve 
algebraic generality transformations (see the next theorem 
for vacuum to electrovacuum transformations). 

Proof: Following Newman and UntF5 we can find a tet­
rad frame for which K = 1T = € = P = P = r - a - {3 = 0. 
In this tetrad Eq. (6.14) has the form 

"'oIu= (uu-u2)!p. (6.28) 

We write the relevant NP equations as 

Dp=p2+UU, 

Du = 2pu + "'0' 
Then Eq. (6.28) gives 

Du!u = Dp!p =p + (uu!p). 

(6.29a) 

(6.29b) 

(6.30) 

Solving this equation, we have u = ap, where Da = 0. Then 
(6.29a) gives 

per) = [b- (1 +aa)r)-I =O(r- I ), (6.31) 

where Db = 0, and O( Y' ) is the order of magnitude symbol. 
Thus 

u(r) =a[b- (1 +aa)r) =O(r- I ), (6.32) 
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"'o(r) = a(ao - 1) [b - (1 + ao)r] -2 = 0(r- 2
), 

(6.33 ) 

(6.34 ) 

where ko = (1 - ao)!( 1 + ao) and DVo = 0. It is an as­
ymptotically fiat space-time25 p=O(r- I ), U=0(r-2), 
and "'0 = 0(r- 5

), hence Eqs. (6.32) and (6.33), and shows 
clearly that (M,g) cannot be asymptotically fiat, and, since 
p, u, "'0 are invariant under the GKS transform (M,g) will 
have the same behavior. 

Theorem 2: If (M,g) is vacuum or electrovacuum with 
[I' a principal null direction (pnd) of the Maxwell tensor 
(tPo = 0), and (M,g) a non-null (tP, =j:.0) electrovacuum 
space-time, their Weyl tensors are algebraically special. 

Proof: Asymptotic behavior of electrovacuum space­
times are given in the same tetrad frame as in the previous 
theorem. Then using Eqs. (6.15) and (6.29b) we have 

Du = D(",oIu+2p) = "'0 +2p, 
u "'oIu + 2p u 

hence 

"'oIu+2p= (b'-r)-I, Db'=O, 

u=a'(b'-r)-I, Da'=O, 

(6.35 ) 

(6.36a) 

(6.36b) 

but for asymptotically fiat space-times,26 u = 0(r- 2
), also 

p = O(r-I) and "'0 = 0(r- 5
). Therefore Eqs. (6.36a) and 

(6.36b) cannot be satisfied unless u = 0, i.e., (M,g) hence 
(M,g) are algebraically special. 

VII. CONCLUSION 

We expressed Einstein's equations for vacuum, vacuum 
with cosmological constant, and electrovacuum fields as a 
differential ideal using a compact Newman-Penrose formal­
ism, and we gave two prolongations of this ideal generalizing 
previous works '7 to vacuum with cosmological constant and 
electrovacuum fields. We obtained prolongations of these 
ideals and constructed Backlund transformations. Vacuum 
and vacuum with cosmological constant cases were also dis­
cussed in Ref. 19. 

We also gave a method to obtain Backlund transforma­
tions. The generalized Kerr-Schild transformation is a well­
known example to these transformations. Existence of other 
Backlund transformations will also be studied. 

The transformations of Newman-Penrose quantities 
were given in Ref. 24. We present here the (linear) differen­
tial equations for the transformation parameter for each case 
discussed above and show that algebraically general asymp­
totically fiat vacuum and electrovacuum solutions cannot be 
obtained (starting from a vacuum solution). 

We finally remark that when the space-time admits two 
Killing vectors, it is known that Einstein's equations consti­
tute a completely integrable system. For space-times with-

h R · S h . . 1618 out symmetry, t e anta- c wmger equatIOn . was pro-
posed as an associated linear equation for Einstein's 
equations, therefore in the case of two Killing vectors this 
equation should reduce to the Belinski-Zakharov system. 
This problem is currently studied. 
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The method of minimization of a multi variable function based on the statistical mechanics 
analogy with a fictitious physical system of many particles is proposed. The function is assumed to 
be the Hamiltonian of the fictitious physical system to fit the global minimum of the function and 
the ground state "energy" of the fictitious system. In this model the global minimum search can be 
imitated by various relaxation processes in the fictitious system described by statistical 
mechanics. These relaxation processes lead to the equilibrium state, which is the ground state at 
the zero temperature limit. The imitation of a relaxation process confers to the minimization 
procedure the advantage of a relaxation process in a real physical system: because of thermal 
fluctuations a real system cannot be trapped by metastable states related to local minima. It 
always reaches the equilibrium state. The simulations of the relaxation processes based on the 
macroscopic kinetic equations and on the Monte Carlo algorithms are discussed. The new Monte 
Carlo algorithm based on the simulation of random walks of the representative point of the system 
in multidimensional phase space of the variables of the function under investigation is proposed. 
Unlike the conventional Metropolis-Rosenbluths-Tellers Monte Carlo method, each elementary 
transition in the proposed algorithm results in simultaneous movement of all atoms of the system, 
i.e., it generates a fluctuation involving any number of atoms. 

I. INTRODUCTION 

Finding the global minimum of a multi variable function 
is one of the most fundamental problems arising in various, 
often distant fields. The solution of this problem faces seri­
ous difficulties drastically increasing with number of varia­
bles. Up to now there has been no general algorithm applica­
ble to any function. The main difficulty is that during the 
minimization procedure the system gets trapped in local 
minima. The existing minimization methods are, in fact, 
procedures enabling the system to escape from these traps. 
To our knowledge, none of these methods, however, can pro­
vide satisfactory general solution of the problem. 

It should be mentioned that one example of successful 
solution of the minimization problem, when minimization 
occurs automatically and local minima do not hinder the 
minimization process, is given by nature. It is the case of a 
classical system of many particles whose potential energy, 
being the function of an enormous number of variables, co­
ordinates of particles, is minimized at O°K. The potential 
energy as well as most of multi variable functions has many 
local minima (metastable states). Nevertheless at finite tem­
perature the system does not get trapped in the minima since 
thermal fluctuations enable the system to overcome poten­
tial barriers surrounding them. Therefore the system can 
always escape from traps and ultimately attain the global 
minimum if its temperature is gradually lowered. 

If temperature is maintained at the same level, the sys­
tem attains the global minimum of the Helmholtz free ener­
gy corresponding to the equilibrium state rather than that of 
potential energy. Use ofthe free energy at finite temperature 
is, in fact, equivalent to employing the "smoothing" proce­
dure because the entropy contribution into the free energy 
eliminates shallow local minima of the potential energy. 

The mechanisms enabling statistical mechanics systems 
to attain spontaneously the global minimum of the potential 
energy with temperature lowering are discussed here be­
cause they also can be adopted to develop the minimization 
procedure for an arbitrary multivariable function as efficient 
as that for statistical mechanics systems. For example, we 
may imitate a certain relaxation process in a specifically con­
structed model of a fictitious multiparticle physical system 
at finite temperature, which would lead us to the global mini­
mum of the relevant multivariable function. 

The statistical mechanics approach to the minimization 
of a multivariable function based on this idea was first for­
mulated and tested in our works 1-3 for the particular prob­
lem of crystal structure determination. In this problem a 
multivariable function is the so-called R factor, the mean 
squared deviation of the calculated moduli of the structure 
amplitudes of x-ray diffraction reflections (Fourier trans­
forms of scattering atomic densities) from the measured 
ones. The R factor is, by definition, a function of coordinates 
of atoms in a unit cell of the crystal lattice. 

II. STATISTICAL MECHANICS FORMULATION OF THE 
MINIMIZATION PROCESS 

Let us consider a multivariable function 
E = E(XI,x2, ... ,xN) of variables XI,x2, ... ,xN' whose global 
minimum is searched. The consideration will be based on the 
statistical mechanics analysis of a certain fictitious multi­
atom system whose ground state would correspond to the 
global minimum of the relevant functionE(x l ,x2' ••• 'xN ). To 
do this, we a~ume that the function E(XI,x2'''.XN ) is the 
Hamiltonian H, 

A 

H = E(xl, ... ,xN)' (1) 
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and the variables x l'''',x N are coordinates of N "atoms" of a 
bounded fictitious one-dimensional system. This is enough 
to introduce the basic thermodynamic functions, the parti­
tion function Z, Helmholtz free energy ell, and the entropy s: 

I 
( 

-E(XI, ... ,xN») 
Z= drexp T ' (2) 

where dr = dx l ... dx N is an element of phase space and Tis 
the absolute "temperature." Integration in (2) is carried out 
over the bounded ranges where the variables XI,x2, ... ,xN are 
defined: 

ell = - TlnZ, 

S=lnr(E\ 

where 

(3) 

(4) 

- f 1 (-E(XI, ... ,xN») 
E = (E) 00 = dr Z exp T E(Xl>···,xN) 

is the internal energy, ( •.. ) 00 denotes averaging over a ther­
modynamic ensemble, and reE) is the "area" of the hyper­
surface 

E(xl, ... ,xN) = E. 
The free energy (3) also can be represented in another form: 

(5) 

The temperature Tintroducedin (2)-(5) characterizes 
the degree of "excitation" of the system. All the introduced 
thermodynamic functions are related to the equilibrium 
state. To describe both equilibrium and nonequilibrium 
states it is convenient to introduce correlation functions of 
the system. 

If the system finds itself in the eqUilibrium state, one­
particle correlation functions, "atomic densities" Pi (Xi> CXl), 
i = 1,2, ... ,N, are described by the equation 

1 (-E(Xl> ... ,xN») X-exp , 
Z T 

following from the Gibbs distribution. If the system has not 
reached the equilibrium state yet, its atomic distribution is 
described by nonequilibrium densities Pi (Xi)' which can be 
found by solution of the kinetic equations for correlation 
functions. The densities Pi (Xi)' by definition, meet the nor­
malization conditions 

f Pi (Xi )dX1 = 1. (6) 

The internal energy of both equilibrium and nonequilibrium 
states can be expressed through the N-particle correlation 
functionp(xl> ... ,xN) as follows: 

E = (E> = f dXI ... dXN p(Xl> .. ·,xN )E(Xl>· .. ,xN)' (7) 

where ( ... > denotes the averaging procedure. For the equilib­
rium state the N-particle correlation function 
p(XI, ... ,xN; CXl) is given by the Gibbs distribution itself: 

p(XI,· .. ,xN'CXl) = (1/Z)exp( -E(xl, ... ,xN)/T). (8) 
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Nonequilibrium entropy in terms of correlation function has 
the form 

S = - I dx l • .. dXN p(XI,· .. ,xN )lnp(xl,· .. ,xN)· (9) 

All calculations are strongly simplified in the mean field ap­
proximation. Transition to the mean field approximation is 
carried out by means of decoupliog, 

P(Xl,x2, .. ·,xN)~I(Xl)P2(X2) "'PN(XN), (10) 

which implies neglecting fluctuations in the system. Ap­
proximation (10) is asymptotically correct at the extreme 
case of low temperatures, which is the case of interest. 

With the mean field approximation (10) the internal 
energy (7) has the form 

E~ f dxl· .. dxNPl(X l ) "·PN(xN)E(xl,· .. ,xN)· (11) 

The entropy (8) is transformed into 

S~ - itl f Pi (Xi )In Pi (Xi )dXi (12) 

if normalization conditions (6) are taken into account. 
Making use of ( 11) and (12) in (5), one obtains the equa­
tion for the free energy: 

eIl=E-TS= I drE(xl, .. ·,xN)Pl(Xl)·"PN(XN) 

+ TitlI Pi(Xi ) lnpi(xi)dxi · (13) 

Equilibrium densities, Pi (Xi) are known to be determined by 
the global minimum of the free energy ell. The necessary 
minimum condition for the free energy under the conserva­
tion conditions (6) yields the set of N nonlinear integral 
equations: 

where, according to (11) and (12), 

c5e1l c5E 
---= + Tlnpi(xi ) 
c5Pi (Xi) c5Pi (Xi) 

= Tlnpi(xi ) + I' dxl· .. dxi _ l dXi + 1 .. ·dxN 

XE(x l ,· .. ,xN)Pl(Xl) '''Pi-l (Xi_I) 

(15) 

and,ui is the undetermined Lagrange multiplier (chemical 
potential) of the ith atom. The chemical potentials,ui should 
be, as usual, chosen to provide the conservation conditions 
(6). As was mentioned above, the equilibrium free energy, 
eIlmin , tends to Emin (ellmin-Emin) with T-o, where eIlmin 
and E min are global minima of the free energy and potential 
energy, respectively. Therefore minimization of the free en­
ergy (12) with respect to the densities Pl(XI ),p2(X2),,,,, 
P N (x N) at gradually lowering temperature solves the prob­
lem of minimization of the function E(x 1, ... ,xN) with re­
spect to the variablesxj> ... ,xN' In other words, the statistical 
mechanics approach formulated above enables us to substi-
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tute minimization of the function E(xI"",XN) with respect 
to its variables XI,x2, ... ,xN' for minimization of the func­
tional <I> with respect to N densities, PI (XI ), ... ,pN (xN )· 

The question of whether such a substitution improves 
our chances to obtain the global minima will be discussed 
below. 

It is of interest also to notice that the above-formulated 
minimization method dealing with the free energy of the 
system is equivalent to the application of the maximum en­
tropy principle. Indeed, maximizing the entropy S under the 
condition that the function E should be minimal amounts to 
minimizing the function 

fIJ= -S+AE, (16) 

where A is the undetermined Lagrange multiplier. If the La­
grange multiplier A = liTis introduced, Eq. (16), in fact, 
becomes equivalent to the equation <I> = E - TS for the free 
energy utiliied above. 

III. MINIMIZATION BY MEANS OF IMITATION OF 
MACROSCOPIC RELAXATION 

The statistical mechanics analogy proposed above for 
solution of the mathematical problem of minimizing a func­
tion of mUltiple variables may be extended not only to ther­
modynamics but also to kinetics. In the latter case, a sponta­
neous relaxation process for density functions, 
PI (XI ),.··,pN (xN ), resulting in a decrease in free energy (13) 
and consequently leading to the equilibrium state referred to 
the global minimum of the free energy, can be simulated. In 
many cases this approach seems to be more efficient than the 
direct numerical solution of the set of nonlinear equations 
( 14). The relaxation process can be, for example, described 
by the Dnsager equations, which, after neglecting the off­
diagonal kinetic coefficients, have the following form: 

dpi (x;.t) __ L [ 8<1> _ ] 
- J-ti , 

dt 8pi(xi ) 
(17) 

where L is the diagonal Dnsager coefficient, 8<1>/8pi (x;) 
- J-ti is the thermodynamic driving force, and t is "time:" It 

is noteworthy that (17) is, in fact, the basic equation of the 
gradient method. Using (15) in (17) and choosing a "time" 
scale so that L is equal to unity, we have 

dpi (x;.t) 

dt 

= - [TlnPi(Xi ) -J-ti 

+ I' dxl···dxi _ 1 dXi + 1 .. ·dxNE(xl, .. ·,xN) 

XPI (XI) ... Pi-I (Xi _ I )Pi+ I (Xi + I) .. , PN(XN) ], 

ati = 1, ... ,N. (18a) 

Since (18a) describes the system with a variable number of 
atoms, it is convenient to supplement it with an equation for 
chemical potentials: 

1836 

d;i = _ ~ [I Pi (xi,t)dxi - 1], at i = 1, ... ,N, 

(18b) 
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providing fulfillment of the normalization conditions (6) in 
the sought equilibrium state. The relaxation "time" T should 
be chosen to be comeasureab1e with the typical relaxation 
time of the entire system. 

Equation ( 18) in such a general form can be of practical 
use only if the number of integrations in its right-hand side 
does not exceed 1. It is certainly not the case with a general 
function E(xl, ... ,xN)' Let us formulate the specific cases 
when the kinetic equations can be solved numerically with­
out computation of multiple integrals. The number of inte­
grations in (18) does not exceed unity if the function E is a 
sum of pairwise functions Wij (xi,xj): 

N 

E(xI,· .. ·,xN) = L Wij(xi,xj)' 
i>j= I 

In this case Eq. (18a) is simplified to 

dpi (xi,t) [ N I 
dt = - j~1 W;j (xi,xj )Pj (Xj )dxj 

+ Tlnpi (Xi) - J-ti ] . 

(19) 

(20) 

Kinetic equations can also be solved in another specific case 
when 

E(xl,· .. ,xN) = 'IIC~I fIJi (Xi) ). (21) 

where 'II(X) and fIJi (x) are quite general functions. In the 
case (21) the mean field approximation yields 

E = ('IIC~I fIJi (Xi»)) ~ 'IIC~I (fIJi (Xi» ) 

= 'IIC~I I fIJi (Xi )Pi (Xi )dXi )­

Since Eq. (18a) can be presented as 

we may rewrite (23) as 

(22) 

(23) 

- [ 'II{~I f fIJi (Xi )Pi (Xi )dXi )flJi (Xi) 

+ Tlnpi (x;.t) - J-ti]' (24) 

if the mean field approximation (22) is employed in (23). 
Equation (24) includes the sole integration on its right­

hand side and thus, in principle, can be solved numerically. 
The particular case similar to that given by (24) was 

considered previously in our above-cited papers,I,2 where 
the thermodynamic concept for the minimization procedure 
was first proposed. It is related to the crystal structure deter­
mination problem based on the minimization oftheR factor, 
a multivariable function of atomic coordinates in a unit cell 
of the crystal lattice. In this case 

E = R (rl , ... rN) = L (IF(H;rl, ... ,rN) 12 - I(H) )2, 
H 

(25) 
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where 
N 

F(H;rl,. .. ,rN ) = L lP} (H,r}), 
}=I 

(26) 

lPi (H,r}) = fj exp(i217Hr}) [compare with (21)], 

where the r} = (xj,y},zj) are coordinates of the jth atom in 
the unit cell andfj, I(H), and H are known constants: the 
atomic scattering factor of the jth atom and the observed 
intensity I(H) of the diffraction reflection related to the re­
ciprocallattice vector H. In the case (25) Eq. (22) has the 
form 

E = ~ [I}~I fj (exp(i21THrj ) > 12 - I(H) r 
= ~ [ Ij~\ fj f Pj (r) ) exp(i21THrj )d 3rj 12 - I(H) r 

(27) 

Solution of the same problem of crystal structure deter­
mination based on another idea, the maximum entropy prin­
ciple, was later proposed in several works.4-7 But, as a matter 
off act, there is no difference between the maximum entropy 
approach and thermodynamic approach proposed earlier. 
The apparent difference consists in terminology only, be­
cause, as was shown by Navazo, Castellano, and Tsoucaris,8 

employing the entropy maximization instead of the free en­
ergy minimization results in the same optimization equa­
tions (see also the end of Sec. I). 

Summing up the foregoing results, one can see that the 
thermodynamic approach based on the imitation of the mac­
roscopic relaxation of the system of many particles is valid 
for minimization of very specific multi variable functions: In 
the general case each iteration of numerical calculations 
would require multiple integrating, the procedure being too 
formidable to be successfully carried out. The second diffi­
culty is even more fundamental. Minimizing the free energy 
at a finite temperature rather than the "Hamiltonian" 
E(x\,. .. ,xN ) may remove shallow local minima as was men­
tioned before, but there is no guarantee that it removes all 
local minima at all. In the latter case the system may be 
trapped in a remaining deep local minimum and fail to reach 
the global one. 

The method proposed in the next section seems to be 
free from the shortcomings mentioned above. This method is 
based on the Monte Carlo simulation of microscopic pro­
cesses of atomic migrations driving the system to its equilib­
rium state. It can be successfully used even for the function 
E(x\, ... ,xN) taken in a general form. 

The simulation of thermal fluctuations inherent to a 
Monte Carlo scheme enables the system to escape local mini­
ma and ultimately attain the global minimum. 

IV. MINIMIZATION BY MEANS OF MONTE CARLO 
SIMULATION OF RELAXATION PROCESS 

Let us consider the microscopic relaxation process lead­
ing to the equilibrium state corresponding to the free energy 
minimum, which is simulated by the Monte Carlo method. 
Finding the equilibrium state at a low temperature would 
also solve the minimization problem since the most probable 
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microstates of a system at low temperature are known to be 
close to the ground state, the global minimum of the "Hamil­
tonian" E(X\, ... ,xN)' The Monte Carlo sampling scheme 
similar to that proposed first by Metropolis, the Rosen­
bluths, and the Tellers for a gas of interacting atoms9 (the 
MRT method) and later widely used for many statistical 
mechanics applications iO serves this purpose. 

Let us assume that coordinates of N "atoms," 
X\,x2, ... ,xN' are coordinates of the representative point of a 
relevant fictitious atomic system in N-dimensional phase 
space. The proposed Monte Carlo method consists of simu­
lation of random walks of the representative point within 
phase space rather than one-by-one random walks of atoms 
in real space as in the MR T method. Random walks are 
generated by means of constant stepwise probabilities for 
elementary transitions that produce a succession of points in 
phase space enumerated by number t. These transitions form 
a Markov chain. Probabilities of elementary atomic transi­
tions are chosen so that any mean value taken over a segment 
of the Markov chain that starts from a certain point of phase 
space, remote from the beginning of the chain, would tend to 
the mean value taken over the petite canonical ensemble 
with the given model Hamiltonian E(x\, ... ,xN ) if the seg­
ment length tends to infinity. 

Below the brief account of the proposed Monte Carlo 
algorithm generating such a chain is presented. 

Let the representative point occupy a point 
R(t) = (x\,x2, ... ,xN) at the "time" t. The next point. 
R' (t + 1) = (xi,xi , ... ,x~ ), in which the representative 
point is shifted to form the (t + I) th state, is generated as 
follows. 

(1) Nrandom numbers (S\,S2,,,,,SN) are generated so 
that each of them is uniformly distributed within the interval 
[0.1] . 

It gives us the shift vector h = a (S\'S2' .... SN ) randomly 
distributed within the N-dimensional hypercube of edge 
length a, which produces the elementary transition 
R (t) --R '(t + 1) according to equation 

R'(t + 1) = R(t) + h, 

i.e., 

R '(t+ 1) = (X\'X2 ... ·,xN) +a(S\,S2'''',SN) 

= (x\ + as\.x2 + aS2, .. ·,XN + aSN ). (28) 

Therefore the random number generator enables us to select 
a new point R' (t + 1) in which the representative point may 
be shifted from the point R(t) during the elementary transi­
tion. 

To answer whether or not the representative points 
shifts by h from the point R(t) to the selected new point 
R' (t + 1), the next step should be done. 

(2) The change in "energy" 

~ = E(x\ + as\,x2 + aS2,· .. ,xN + asN) - E(X\ .... ,xN) 

resulting from the elementary transition 

(X\,x2, .. ·,xN )--(x\ + as\,x2 + aS2, .. ·,xN + asN ) 

of the representative point is computed. Two outcomes are 
then possible. 
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(i) If /}.E<.O, the elementary transition is made and the 
resultant atomic configuration corresponding to the repre­
sentative point 

R' (t + 1) = (XI + aSI,x2 + az52.···,xN + asN) 

is assumed to be the new one. 
(ii) If /}.E> 0, the elementary transltlOn 

R(t)-R' (t + 1) is made with the probability exp( - tJ.E I 
n. It occurs if a number S taken from a uniform distribution 
on the interval [0.1] produced by the random number gen­
erator satisfies the inequality S < exp ( - /}.E IT), and it does 
not occur if s> exp ( - /}.E In. In both cases the resultant 
configuration is assumed to be the new one. 

It can be easily proved that the proposed Monte Carlo 
scheme generates a Markov chain of microstates R(t). The 
mean value of any physical value A = A (XI (t), ... ,xN (t») 
= A (R (t) ) over the stationary segment of the Markov chain 

between the toth and (to + t)th states tends to its mean value 
over the petite canonical ensemble when t_ 00. i.e .• 

1.. t'it A (R(T»)-f dXI '" dXN A (R)1.. exp( _ E(R»). 
t 'T=t Z T 

o (29) 

The proof of relation (29) is the same as that for the MRT 
method (see, for example, the review paper by Wood II). 

The main difference. which, however, does not change the 
line of reasoning, is that in the relevant case we consider 
migration of the representative point in N-dimensional 
phase space, whereas in the case of the MRT method, migra­
tion of atoms occurs one by one. 12 In both cases the assump­
tion that atomic coordinate variations are bounded is need­
ed, however. It should also be mentioned that the MRT 
scheme is a particular case of the scheme formulated above. 
Indeed, the former can be obtained from the latter by impos­
ing the quite rigid constraint on elementary transitions, viz. 
the assumption that each elementary transition of a repre­
sentative point can occur only along one of N coordinate 
axes of the N-dimensional phase space of the system. Only 
such a constraint yields an elementary transition involving a 
sole atom as it is required by the MRT algorithm. On the 
contrary. each elementary transition generated in the meth­
od proposed above involves simultaneous migration of all 
atoms and thus has a more general form. In terms of fluctu­
ations this difference can be formulated as follows. The 
MR T method generates fluctuations resulting in the move­
ment of a sole atom and does not take into account fluctu­
ations of pairs. triplets, quadruplets. and so on of atoms. 
whereas a fluctuation generated by the relevant method are 
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more general: it may involve any number of atoms. Because 
of this. the better convergence of the relevant Monte Carlo 
algorithm should be expected. If it is true. the proposed algo­
rithm wi! prove to be more efficient also for conventional 
statistical mechanics systems than that of the MR T method 
usually employed. The results already obtained are quite 
promising. The thermodynamics analogy proposed in Refs. 
1 and 2 was the basis for the structure determination of a 
crystal from the x-ray diffraction data3 and for solution of 
the traveling salesman problem. 13 In both cases the MR T 
method was applied for a certain fictitious multiatom phys­
ical system. Minimization of a multivariable function in both 
studies would be impossible to obtain by conventional math­
ematic methods. Employing the relevant Monte Carlo tech­
nique seems to be even more promising. 

For a very important problem, crystal structure deter­
mination from x-ray diffraction data. the Monte Carlo ap­
proach based on the thermodynamic analogy raises the hope 
of a breakthrough in the problem of direct determination of a 
structure of a crystal with more than 100 atoms per unit cell 
and the even more ambitious problem of protein structure 
determination without heavy atom derivatives. In the latter 
case the relevant Monte Carlo method may be applied suc­
cessively in several stages, increasing the resolution from 
stage to stage. 
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An exact closed form solution is obtained for the time dependence of the coverage of a 
homogeneous, infinite, one-dimensionallattice filled irreversibly and cooperatively by R-mers. 
Cooperative effects, not assumed to be reflection invariant, may extend up to range R. Previously 
available exact solutions for random filling and nearest neighbor cooperative effects are 
recovered. For dimer filling with genuine range-2 cooperative effects it is found that 
autoretardative and autocatalytic rate regimes may lead to the same saturation coverage. Various 
adsorption schemes are considered. 

I. INTRODUCTION 

As indicated recently, 1 the problem of R-mer filling 
with general range-R cooperative effects is exactly solvable. 
A method of solutionl-O deals with an infinite hierarchy of 
rate equations for the various subconfiguration probabilities, 
reduces itto a closed subhierarchy for In (t), n = 1,2, ... , the 
average densities of sequences of n contiguous empty sites at 
time t, and achieves exact hierarchy truncation 1-3 on observ­
ing an empty site shielding property. 1.2 In the present case, a 
closed coupled set of hierarchical equations for 
II (t) , ... ,/ 3R _ 1 (t) is retained. This system of 3R - 1 first­
order linear differential equations can be integrated recur­
sively, but it is not clearl whether successive solution is suit­
ed for providing closed form expressions for 1 n (t), 
n = 1, ... ,3R - 1. 

The lattice coveragel-O at time t, O(t), is of great impor­
tance both in the study of adsorption processes 7 as well as in 
the analysis of reactions on polymer chains,8 and it is this 
quantity we are interested in. It is given by the relation 

"" 
O(t) = 1- L nl,,(t) (1) 

n=1 

and may therefore be obtained from the above-mentioned 
approach. 1 The fact that Eq. (1) involves an infinite sum is 
not really a problem since !.;; = 3R n 1 n (t) is of simple form, 1 

but in making use of Eq. (1), II (t), ... ,1 3R -I (t) clearly 
must be known. Rather than to explore the possibility of 
obtaining explicit representations for II (t), ... ,/ 3R -I U), 
and hence for OU), we here present a generating function 
technique4.s.9-13 that yields O(t) directly. The quantity we 
study is the mean number Nn (t) of empty sites at time t in a 
lattice of n initially unoccupied compartments (sites). Im­
posing some simplifying boundary condition (which has no 
effect in the limit of an infinite lattice) it is seen that 
dNn (t)/dt may be expressed in terms of NI (t), ... ,Nn (t). 
These first-order linear differential equations, beginning 
with n=R [observe that trivially N 1(t)=I, ... ,NR _ 1 (t) 
=R - 1], may be integrated progressively. However, solv­
ing successively does not seem to be quite suitable to perform 
an asymptotic analysis. We thus introduce a generating 
function for {Nn (t)}, which proves to satisfy a first-order 
linear partial differential equation whose solution, subject to 
an appropriate initial condition, can be obtained explicitly, 

providing precise information on the asymptotic behavior 
(n~oo ) of N n (t) and, particularly, on 

0(1) = 1 - lim N n (t)/n. (2) 
..... "" 

Exact closed form solutions for irreversible cooperative 
processes on infinite one-dimensional lattices have been giv­
en by several workers (see Ref. 1 for a review). In all the 
cases treated, the lattice coverage O(t) [a similar remark 
applies to I" (t)] is found to be of the generic form 

O(t) = Cl>*(t) + ItlCl>I(t) i~ArPI(X)xbleQ(") dx, (3) 

where Pi and Q are polynomials, Cl>* and Cl>i are (possibly 
constant) functions of exponential type, and A. > 0, K, and hi 
are constants. As we shall see in Sec. V, processes with gen­
eral range-R cooperative effects will, for the most part, obey 
that rule as well. Only in some exceptional cases Pi may not 
be a polynomial. In the case of random R-mer filling,9 the 
polynomial Q is of order R - 1; it is of order R for R-mer 
filling with nearest neighbor cooperative effects4 as well as in 
the case of the isomorphic 1 process of monomer filling with 
range-R cooperative effects incorporating range-(R - 1) 
blocking.s We shall find in Sec. V that for R-mer filling with 
genuine range-R cooperative effects the order of Q raises to 
2R - 1. Thus, with the exception of Flory's random dimer 
filling l4.ls and Boucher's monomer filling with nearest 
neighbor cooperative effects, 16 the integral on the right-hand 
side (rhs) ofEq. (3) must be evaluated numerically. 

By simply performing an integration by parts in Eq. (3) 
it is seen that Cl>*, Cl>j, Pi' and hi are not uniquely determined. 
Their actual form, however, may be of considerable impor­
tance. For example, hi < 0 may cause convergence problems4 

of numerical quadrature procedures; even worse, hi <; - 1 
may (additionally) complicate an asymptotic (t~oo) anal­
ysis; for integration purposes, however, a high-order polyno­
mial PI is not desirable either. In consequence, it is worth­
while to know that the present approach is highly ambiguous 
in the sense that it may produce quite a lot of different inte­
gral representations (3). This peculiarity 10, II of the generat­
ing function technique (see Appendix A) is due to the fol­
lowing. Since the divergence behavior of 
Fk (s,t) = !.;; = kN" (t)s" as Sf 1 [which determines the 
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asymptotic behavior of N n (t) as n-oo] does obviously not 
depend on k = 1,2, ... , any Fk may be chosen as "the" gener­
ating function. But to each Fk (k = R,R + 1, ... ) corre­
sponds an integral representation (3) with characteristic 
<1>*, <1>;, Pi> and h; (i.e., these quantities depend on k). In 
Sec. IV, two possible choices 

'" G1 (s,t) = L N n (t)~ (4) 
n=3R 

and 

'" G2 (s,t) = L N n (t)sn (5) 
n=R 

will be dealt with. The integral representation (3) associated 
with G1 is of "all-weather" type (h; > 0), well suited forinhi­
bitory like effects, but unnecessarily monstruous (high-or­
der P;) for autocatalytic processes and random filling. The 
generating function G2 leads to an integral representation 
(3), which converges badly if effects are anticooperative. It 
is, however, well adapted for autocatalytic rates and reduces 
to a well-known representation10

,l1 in the case of random 
filling. A further possibility (not explored here) is to consid­
er Mn (t) = n - Nn (t) (the average number of occupied 
sites at time t in a lattice of n initially empty compartments) 
and some corresponding generating function. Tackling the 
problem this way also affects10

,l1 the representation (3), 
though not altering its generic form. 

R -mer filling with general range-R * cooperative effects, 
R * > R, is not amenable to exact solution. I

-
3

,17 As a conse­
quence, our method cannot go through in this case either. 
That this is indeed so will be seen in Appendix B. 

In the following section (Sec. II) we introduce some 
notation and define the model precisely. The rate equations 
for Nn (t) are stated in Sec. III and transformed into partial 
differential equations for the generating functions G1 and G2 

in Sec. IV. Closed form expressions for O(t) are given in Sec. 
V. Various examples of cooperative processes are discussed 
in Sec. VI. 

II. THE MODEL 

Given a linear lattice of sites, which may be either filled 
or empty, we call a run of k adjacent empty sites a k-tuplet 
and term a maximal k-tuplet (i.e., a k-tuplet not forming 
part of any larger n-tuplet, n>k + 1) ak-gap. Observe that a 
k-tuplet contains k singlets, k - 1 doublets, ... , and two 
(k - 1 )-tuplets. 

Since the present R-mer filling process is assumed to be 
irreversible and since multiple occupation of sites will not be 
considered, the state of the lattice can change only by ad­
sorption of R-mers to R-tuplets, i.e., by occupying R conti­
guous empty sites at a time. Adsorption rates, thus clearly 
referring to R-tuplets, will generally be influenced by the 
occupied or unoccupied status of other sites on the lattice. In 
this paper we shall assume that these cooperative effects are 
restricted to rangeR, i.e., the (R + 1 )st, (R + 2)nd, ... near­
est neighbors on either side of an R-tuplet do not affect its 
adsorption rate. 

Because of R-mer filling, if an R-tup1et's (k<.R - 1) 
nearest neighbor is occupied, its (k + 1 )st, ... ,R th nearest 
neighbors (on the same side) are filled, too. The range-R 
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environment of an R -tuplet is therefore completely described 
by a pair (i,j) of non-negative integers, i,j<.R, denoting by i 
andj the number of empty neighboring sites (within range 
R) to the left and right, respectively. Since there are 
(R + 1)2 possible range-R environments we must specify an 
equal number of adsorption rates to completely characterize 
the process. The adsorption rates associated with the range­
R environment (i,j') will be denoted 'T . . and assumed to be ',J 
time independent. We furthermore assume that 'T R,R > O. 

The present generating function technique requires the 
study of finite lattices. Then, in contrast to infinite lattices, 
end effect problems18 come up. These, however, are over­
come most easily by considering only lattices with R filled 
units at each end.4

,5 Such a boundary condition (as any other 
referring to a finite number of end sites) has no effect on an 
asymptotic (n-oo) analysis. 

Weare now in a position to define our adsorption pro­
cess formally. Fix an integer R> 1 and consider a homogen­
eous one-dimensional lattice of n + 2R sites. Suppose that 
the R contiguous units at both its ends are occupied while its 
remaining n interior sites are initially (t = 0) empty. Re­
garding the kinetics of the filling process we then postulate 
that an R-tuplet with range-R environment (i,j),present at 
time t>O, becomes occupied in the time interval (t,t + h) 
with probability 'Ti.jh + o(h) [as usual, o(h) stands for a 
quantity of smaller order of magnitude than h, i.e., o(h) is 
such that o(h)lh-D as h-D], and there is no desorption 
from the lattice, no multiple occupation of sites, and no skat­
ing across the lattice. The time development of the lattice 
coverage will be described by N n (t), the average number of 
empty sites at time t. Clearly, 

N n (0) = n, n = 0,1, ... , (6) 

N n (t)=n, n = O,l, ... ,R - 1, t;;.O. (7) 

It is convenient to introduce the following notations: 

'T = 'T R,R > 0 ( 8 ) 

'Tj = 'TR,j + 'Tj,R' j = O,l, ... ,R - 1, 

if i,j>R, 

if j;;.R and i = O,l, ... ,R - 1, 

if i>R and j = O,l, ... ,R - 1, 

k 

dk = L 'Tk_;,;' k = 0,1, ... , 
i=O 

R -1 'T. 

P = L"":' and r = 3R - 1 - p. 
;= 0 'T 

(9) 

(10) 

(11 ) 

(12) 

In our filling process, the adsorption of an R-mer may be 
viewed as the destruction of some k-gap, say, and the simul­
taneous creation of a (left-hand) k1-gap and a (right-hand) 
k2-gap, kl + k2 + R = k. Observe that the destruction of a 
(k + R ) -gap takes place at rate d k' 

For later reference we state 
k 

L i('T;,k_; +'Tk _ i,;) =kdk , k= 1,2, ... , (13) 
;=1 

R-l 

L 'T; = d2R - 1 = 'Tp. 
;=0 

(14) 
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To prove Eq. (14) we rewrite dlR _ I [see Eq. (11)] in the 
form 

R-I lR-I 

dlR _ 1 = L T2R_I_I,1 + L TlR_I_I,1 
1-0 I=R 

and observe that 
lR-1 

L TlR_I_I,1 
I-R 

and 

R-I 

= L TR_I_I,I+R 
1-0 

R-I R-I 
= L TR-I-I,R = L TI,R 

1=0 1=0 

R-I R-I 
L TlR -1- 1,1 = L TR,I' 
1-0 1-0 

where we used (10) twice. On recalling (9), Eq. (14) fol­
lows. 

III. THE RATE EQUATIONS 

The following rate equations are fundamental ~o our 
subsequent analysis (they will be derived in Appendix B): 

dN (t) [ R-I ] 
" = - (n - 3R + l)T + L TJ N" (t) 
~ J-O 

,,-lR 
+2T L ~(t) 

J=R 
R-I 

+ L TJ[j+N"_J_R(t)], n>3R-1. 
J-O 

In Appendix B we will see furthermore that 

N"+R (t) = n + Re- d•
t
, n = O,I, ... ,R - 1, 

and 

" + La",;e-d,t, n = 0,1, ... ,R -1, 
1=0 

where we set, for any n = 0,1, ... ,R - 1, 

{ 

R". 
n + R - -- L T;, if d"+R #0, 

q,,+R = d,,+R 1=0 

0, if d"+R = 0; 

(IS) 

(16) 

(17) 

(18) 

a,,; = {RT"_I/(d"+R -d;), ~ dl#d,,+R' 
, 0, if d; = d,,+R' (19) 

i= O,I, ... ,n; 

" r,,+R =n+2R-q,,+R - La",l; (20) 
;=0 

and 

(21) 

withM" = {i=O,I, ... ,nld; =d,,+R#O}. Note that if 
d" + R = 0, then necessarily T; = 0, i = O, ... ,n, and hence 
a".; = ° whether d; = d" + R = ° or not. Furthermore, p" + R 
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may differ from zero only if d" + R #0. Thus, if d" + R = ° 
then N" + 2R (t) = n + 2R as it should. 

By making use of (16) and (17), Eq. (IS) may be inte­
grated recursively, thus providing closed form solutions [see 
also Eq. (47)] for finite lattices (of the form considered 
here). Proceeding this way, however, does not seem to be 
suitable to analyze infinite lattices. We therefore employ the 
following generating function technique. 

IV. DIFFERENTIAL EQUATIONS FOR THE 
GENERATING FUNCTIONS G1 AND G2 

We first deal with GI as defined in Eq. (4). Multiplying 
both sides ofEq. ( 15) by s" and summing from 3R to 00 gives 

aGI + aGI _ [ + ,rRgo(s) ]G + R ( t) -- TS---T r I IS" 
at as l-s 

(22) 

where r has been introduced in Eq. (12) and where 

goes) = (1/T){To + (TI - To)S 

+ ... + (TR_I -TR_ 2 ),rR-I + (2T -TR_I ),rR} 
(23) 

and 
R-I 3R-I 

RI (s,t) = L TI,rR + I L s"N" (t) 
1=0 ,,=lR-; 

+ {2T 3~Rlt+2RNI (t) + slR :t:iTI} (1 -S)-I. 

Furthermore, setting 

1 { R-k-I 
- Tk + L (Tk+; -Tk+;_I)i 
T ;= I 

+ (2T-TR_ I ),rR-k}, k= 1, ... ,R-l, 

2, k=R, (24) 

we may rewrite RI (s,t) in the form 

slR {R-I. R-I 
RI(s,t) =-- L ITI +T LgR-,,(s)N,,+R(t) 

l-s 1=1 ,,=0 

+ T,go(s) :t~s"N" + 2R (t)}. (25) 

This in tum, on substituting for N"+R (t) and N"+2R (t) 
from (16) and (17), respectively, may be transformed into 

(26) 

with 

R-I iT. R-I R-I 
81 (s) = L -' + goes) L q"+R S" + L ngR_" (s), 

;=1 T "=0 ,,=, 

(27) 

{

RgR_"(S) +go(s)Rf'a;,,,i, n =O, ... ,R -1, 
8,,"(s) = ;=" 

r"s" - RgO(S), n = R, ... ,2R - 1, (28) 

and 
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We now turn our attention to the generating function 
G2• Introducing 

into (22) gives 

aG aG [ ~g (s) ] 
3R-I 

GI (S.f) = G2(S.f) - I N" (t)~ 
,,=R 

-a2 + rs-a.2 =rr+ 0 G2+R2 (s.t). 
f 'S l-s 

where 

R 2(s.t) = RI (s.t) + 3-r I~{ dN" (t) + rN" (t) [n _ r _ ~go(s) ]} 
,,=R dt l-s 

or 
3R-I ~R R-I R-I " 

R 2(s.t) = I [(n - r)r - d"_R ]~N" (f) + -- I ir/ - I ~+2R I (i + R)r,,_/ 
,,=R l-s /=1 ,,=0 /=0 

(30) 

(31) 

where we used Eqs. (B2). (B5). and (25). Observing that the last sum but one on the rhs ofEq. (31) vanishes and taking into 
account Eqs. (10)-(12) and (14) yield 

3R-2 ;(s)~ 
R 2(s.t) = I /3"~N,, (t) + --. 

,,=R 1 - s 
where we put 

/3" = (n - r)r - d,,_R' n = R •...• 3R - 2, 

and 

(32) 

(33) 

R-I [R ] 
;(s) = I Ii r/.o +ro,/ + IS"(r/,,, +r",/ -r/,,,_I -r,,_I,I) . 

1=1 ,,=1 

(34) 

Making once more use of ( 16) and (17) we finally see that 

R 2(s.t) =rs'l{c52(S) + 2J02c52,,, (s)e-
dn

' + ~~:rE2,,,(S)te-dn'}. 
where 

(35) 

R-I 2R-2 ;(s) 
rc52(s) = "~ln/3"+R~ + "~R q,,/3"+R~ + l-s • (36) 

{R/3"+R~ + Ri 2a/,,,/3/+ 2R I+R, n = O, ... ,R - 1. 
rc52,,,(s) = /=" 

r,,/3"+R~' n=R, ... ,2R-2, 

and 

(37) 

v. CLOSED FORM SOLUTIONS FOR 9(t) 

We now proceed to solve Eqs. (22) and (30). To this 
end. set 

R-I s'< 2R-I (1-rk_R/2r)s'< 
S'(s) = I - + I ' (39) 

k= I k k=R k 

and recall (23) to check that 

2s(1-s)S"(s) =2s-~go(s). (40) 

leads to the simpler equation 

aHk aHk 
--+rs--at as 

(38) 

= (1-s)2s-y~s(S)Rk(S.t), k= 1.2. (43) 

Because ofEqs. (4)-(6) and (41) we must look for solu­
tions satisfying the initial conditions 

hl(s)~I(s,O) = ~s(s)~R-Y[3R - (3R -1)s] (44) 

Owing to Eq. (40), substitution of and 

into 

1842 

Gk(s,t) = (l-s)-2sYe-2s(S)Hk(s,t), k= 1.2, (41) h2(S)~2(S.O) =~s(S)~-Y[R - (R -1)s]. (45) 
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By tackling the auxiliary equations associated with ( 43 ) and 
using Eq. (26) we obtain, for k = 1, 

HI(S.f) =hl(se- Tt ) + I(se-Tt,s). (46) 
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where 

2R-l [y ]dl'T (X)} +.L - E1,i(X)10g - fils(x) dx. 
I=R X Y 

NotingEqs. (12) and (27)-(29) we see that s"H1(s,t) is (in 
the variables), for any t > 0, an integral function 19 of order at 
most 2R - 1. (It is of order 2R - 1 iff 'T R _ 1 :;6 2'T.) Quite 
similar to former workI2

•
13 it therefore follows19 from Eqs. 

(4), (41), and (43) [andonobservingthats'(l) = 2R - 2 

-p/2], that for any t>O, O<E<P = 1/(2R -1), as 

Nn (t) = {H1(1,t)[n -R + i] 
+ aH(I,t)}e- 2SO ) + O(n-n(p-E». (47) 

'Tat 
Particularly, 

1- 8(t) = lim Nn(t)/n = H 1(1,t)e- 2SOl , (48) 

or, more explicitly, 

Observe that Eq. (49) simplifies considerably if E\,; (x)-O, i = R, ... ,2R - 1. Due to Eqs. (21) and (29), E\,; (x)=Owhenever 
d; = ° or when dj :;6djoj = O, ... ,i - R. Clearly, these conditions will be fulfilled in most cases. 

Taking into account that 3R - r = p + 1 > 0, we obtain from Eqs. (44) and (49) the following expression for the 
saturation coverage of an infinite lattice: 

8* = lim 8(t) = l_e- 2s(tl ((1-X).xP[O\(X) + Lo\,;(X)]e2S(X) dx, (50) 
~oo 1 ~ 

where 

M = {i = 0,1, ... ,2R - lid; = O}. (51 ) 

Similarly, a solution to Eq. (43), subject to the initial condition (45), may be found in the case k = 2 and a relation 
analogous to Eq. (47) may be given. We desist from presenting the details and only state the following alternative representa­
tionofO(t), based on Eqs. (36)-(38): 

Clearly, Eq. (52) is valid for any t>O. An asymptotic analy­
sis, however, is problematic if R - r = 1 + P - 2R < 0, 
since then integrals (if not identically vanishing) as well as 
h2 (e - rt) diverge as t __ 00. The following formula is there­
fore only true ifp - 2R> - 1, 

0* = l_e- 25(1l f(1-X)2.xP- 2R [02(X) 

+ ~/j2,;(x)Je2S(X)dX, (53) 

with M as defined in Eq. (51). 
For the purpose of numerical evaluation, Eq. (52) is, for 

obvious reasons, not suited if p - 2R < - 1 and t is large. 
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However, if t and p become big, Eq. (49) must be treated 
with care, too. 

Inspection of Eq. (52) [and the pertinent Eqs. (9), 
(11), (12), (18)-(21), (33), and (35)-(39)] shows that 
O(t) does not depend on 'Ti,j and'Ti.i separately but only on 
their sum 'Ti.} + 'Tj,i' A similar observation has been made 
formerly. S.20 

As should be clear from our approach (see also com­
ments in Sec. I and Appendix A) (49) and (52) are (differ­
ent) representations of a common value [namely, O(t)], i.e., 
both representations [as well as (50) and (53)] reduce 
(necessarily) to a common form. In view of the complex 
formulas, to show this analytically (in a way different from 
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our "two-generating-function-approach") would be suici­
dal, however. Nevertheless, in the following consideration of 
special cases we find that there is consistency with earlier 
published results. 

VI. EXAMPLES 

Our most general R-mer filling with range-R cooperat­
ive effects described above includes the most different ad­
sorption schemes, such as random filling, filling with nearest 
neighbor (range-R *) effects, filling in stages, and filling with 
range-R * blocking, R *<.R. Here we revisit some well­
known cases and consider others not studied yet. 

A. Random filling 

In the case of random filling all rates are equal, i.e., 
1"i,j = 1", i,f;;.O. Consequently, 1",. = 21", P = 2R, 
r=R -I,d,. = (n + 1)1", andPn = 0. Hence 

R-I Sk 

02,n (s) = £2,,. (S)=o, s(S) = I -, 
k~ I k 

02(S) = <p(S) = {il~, 
1"(1 - S) i~ I 1 - s 

and we obtain from Eq. (52) 

O(t) = l_e-2W){h2(e-rt) 

+ 2f_,,(1-x<tlliXie2S(X) dX}. 

The saturation coverage is therefore of the form lO
•
11 

0* = 1- 2e- 2s(l) II (1-x) I l

ix1e2S<:J<) dx. 
o 1=1 

f 1 ~~::::r:===::::~~~ 
() 

0.90~--.------'----.------r--.-------r----' 

30 rt-

(54) 

(55) 

FIG. I. The lattice coverage 8(a,rl) as function ofrl for various values ofa 
in the case of dimer filling with model I range-2 cooperative effects (see Sec. 
VID). 

1844 J. Math. Phys., Vol. 27, No.7, July 1986 

An alternative representation of 0 * has first been given by 
Mackenzie9 (see also Appendix C). Another one will be ob­
tained in Sec. VI B below. 

In Figs. 1 and 2 (Figs. 3 and 4) the a = 1 case corre­
sponds to random dimer (trimer) filling. 

B. Range-R* blocking 

R-mer filling with range R * blocking, I O<R *<R, re­
quires 

1" .. = {1", ifi,j>R *, 
',J 0, otherwise, 

i.e., the rate matrix (1"i,j) has the following form (remember 
that i,j = 0,1, ... ): 

R* 

° ° ° ° ° ° 
} R' . 

° ° ° ° ° ° (1"I,j) = 
° ° ° 1" 1" 1" 

° ° ° 1" 1" 1" 

Then 

{
a, j= O, ... ,R * - 1, 

1". = 
J 21", j = R *, ... ,R - 1, 

p = 2(R - R *), r = R + 2R * - 1, 

d _ {a, 
,. - (n - 2R * + 1)1", 

n = 0, ... ,2R * - 1, 
n = 2R *, ... ,2R - 1, 

{
~.-k 

gk (s) 2, , 
k=O, ... ,R *, 

k = R * + 1, ... ,R - 1, 
R+R*-I s" 

s(s) = I -, CI,,, (s)=O, n = R, ... ,2R - I, 
k=1 k 

and expressions for q", r", and a",i' and hence for 0 I and 0 1,,,, 

follow easily. Rather than to state these explicitly for general 
R * we confine ourselves to illustrate two cases: R * = R and 
R*=O. 

lr--.---,--.-------r----, 

1 
()* 
0.95 

R = 2 a: Model I 
b: Model II 

0.2 0.4 O.G 0.8 
ex/(l. ex)-

FIG. 2. The saturation coverage 8· for dimer filling with model I and model 
II range-R • cooperative effects. R • = 1,2 are shown. 
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lr---'---~----'---'----' 

t 
()* 

0.750!----70.-=-Z --....,0:-L .• :------::0":-.6-----='0.-=-8 --~ 
1X./(1'1X)-

FIG. 3. The saturation coverage () * for trimer filling with model I range-R * 
cooperative effects. R * = 1,2,3 are shown. 

and 

(i) For range-R blocking 
R-I 

151 (s) = 2 L lIS" 
.. =1 

15 {2Rsn, 
I.n (s) = 2(n + R )sn, 

n =O, ... ,R -1, 

n = R, ... ,2R - 1. 

Equation (49) therefore yields 

O(t) = l_e- 2S(1){h l (e- n ) 

t 2R-I } + 2 Je-'" (1 - x) .. ~o (n + R )x"fill(JC) dx 

f R = 3 Model II 

()* 
0.95 

0.750!----70.-=-Z --....,o:-L .. :-----:-O":-.6-----='0.-=-8 ----' 

OC/(l.OC)--

FIG. 4. The saturation coverage () * in the case of trimer filling with model II 
range-R * cooperative eft'ects.R * = 1,2,3 are shown. 
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and 

i
l 2R-l 

0*=1-2e- 21(1) (I-x) L (n +R)x"e2S(JC) dx. 
o 11-0 

(56) 

We cross-check Eq. (56) by means of an isomorphism argu­
ment in Appendix C. 

(ii) For range-O blocking, i.e., random filling, it is seen 
that 

0* = I - 2e- 2S(1)f (1-x)x2R {R(R-1) 

+ RilxlI[n +R _ 2R(n + 1) ]}e2S(JC) dx. (57) 
11=0 n+R+l 

Observe that it would be extremely tedious to prove the 
equality of the representations (55) and (57) by common 
methods (integration by parts, etc.). 

Some numerical values for R-mer filling with range-R * 
blocking (R = 1, ... ,7) may be found in Ref. 1. 

C. Nearest neighbor cooperative effects 

Here the rate matrix (7'/,,) is of the form 

(7'1,) =(:~ ;1 ;1 
, er; 7' 7' 

... ) ... 

We remark that rates with reflection unsymmetry (here the 
case er; :Ferl) have been considered earlier.!I,20,21 To simplify 

notation, set 2K = 7'017', L = erol7', and a = e - n. For the 
variables pertinent to Eq. (52) we then find 

p=2(R-I+K), 7'o=erl +er; 

and 

d _ {ero, n = 0 
II - 7'0 + (n - 1)7', n = 1,2, ... 

Owing to the fact that fJ II = 0, n = R + I, ... , 

E2,II (s)=O 

and 

15
2

,11 (s) = {Ro,(2K - L - 1), n = 0, 
n = 1,2, ... ,2R - 2, 

and Eq. (52) therefore simplifies significantly: 

O(t) = l-e- 2S(1){h2 (a) 

I i l 

+- (1_X)X2K-2~(X)e2l(X) dx 
7' a 

+R(2K-L-I)aL f(1-X)2 

XX2K - L - 2e2S(X) dx}, 

where 

s(s) = 111' + sR(1-K) 
k=lk R 

B.Mellein 
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and 
R-I 

t/>(S) = [2T - To](R - l)~ + L [TO + 2T(k - 1) ]i'. 
k=1 

The case Uo = UI = ui = T corresponds to random fill­
ing. Then, but also (we commented on this fact at the end of 
Sec. V) when Uo = T, To = U1 + ui = 2T, UI #ui , Eqs. (54) 
and (58) coincide. Range-l blocking is obtained for 
UO=u1 =ui =0. 

Former analysis of nearest neighbor effects4
•
6 dealt with 

sequence distributions, thus providing expressions for 8(t) 
via Eq. (1). A direct comparison of these results with our 
comparatively compact expression (58) is somewhat cum­
bersome (at least if R>2). 

For monomer filling with nearest neighbor cooperative 
effects, t/> (x) ==0 and only one integral term is retained in Eq. 
( 58 ). Recalling (45) and carrying out an integration by 
parts gives 

X[K(1-X)2+ X(1-x)]e2S(X)dX}, (59) 

which is Eq. (3.2) of Boucher. 16 Passing to the limit t-- 00 in 
Eq. (59) provides, when L = 0, i.e., UO = 0, 

8*= 1-2e- 2SO)f X2K
- 1 [K(1_X)2 

+ x(1 - x) ]e2s
(X) dx. 

In the same case (R = 1, L = 0), Eq. (58) yields, on assum­
ing K>!, the alternative expression 

8 * = 1 - e- 2S(1)(2K - 1) f (1 - x)2,rx-le2S(X) dx. 

In the general case, R> 1, but if K > ! and L > 0, we ob­
tain, from Eq. (58), 

Ta2R - TalR· -I T~·+ 1 TaR. 

Ta
2R

--
1 

Ta
lR

--
l raR- raR· -I 

(ri,}) = raR·+ 1 TaR· Tal ra 

TaR· raR-- 1 ra r 

TaR· raR-- 1 ra r 

t 
1 

() 
0.8 

0.6 

0.4 

R=2 

0.25 O.S 0.75 

i : Model I 
b : Model II 

1.25 1.5 1.75 2.0 
Tt-

FIG. 5. The lattice coverage 9(a,11) as function of 11 for a = 3 and 
a = 0.75 in the case of dimer filling with model I and model II range-R -
cooperative e1I'ccts (see Sees. VI D and VI F). R - = 1,2 are shown. 

8 * = 1 - (1h)e-l~(l) f (1 - x)x2K - l t/>(x)e2S(X) dx. 

To get an expression for 8 * in the case K <~ one may utilize 
Eq. (50). 

In Figs. 2-5 the case R * = 1 corresponds to nearest 
neighbor effects. In model I (see Refs. 1 and 6), 

Uo = a 2T and U 1 = ui = aT, 

i.e., each filled nearest neighbor changes the rate by a factor 
a. In model II, the effect of two filled nearest neighbors is 
assumed to be equal to that of one alone, i.e., 

uo=ul=ui = aT. 

We discuss these models in more detail in the following sec­
tions. 

D.Modell 

Let I<R *<R. The adsorption scheme associated with 
the rate matrix 

TaR-

ra
R
--

1 

ra 

r 

r 

will be called model I (with range-R • cooperative effects). Here each filled site-within range R ·-modifies the basic rate r 
by a factor a. For R • = 1 this rate regime has been considered previously. 1,6,22 Observe that the a = I case corresponds to 
random filling and the case a = 0 to range-R • blocking. 
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Here 

p = 2( R - R * + i~1 ai) = 3R - 1 - r 

and 

-= 
T 

(n+l)a2R *-", n=O,l, ... ,R*-l, 
R* L a i + (2R * - n -l)alR *-,., 

i=2R*-n 

n = R * , ... ,2R * - 2, 
R* 

2 Lai + (n - 2R * + l)T, 
i=1 

n = 2R * - 1, ... ,2R - 1. 

Hence /3,. = 0 for all n>2R * - 1 + R and therefore 

62,,. (S)==O=:E2,,. (s), for n>2R * - 1. 

In consequence, the summation index n in Eq. (52) runs 
only up to 2R * - 2. 

Clearly, O(t) may be expressed explicitly in terms of 
only R, R *, a, T, and t, but such efforts do not lead to an 
apparent simplification ofEqs. (49) and (52). We therefore 
desist from doing this. We only remark that, given T and 
n<2R * - 2, there are generally a-values such that 
di = d,. + R for some i = O, ... ,n [see Eq. (21)]. Hence [see 
Eqs. (29) and (38)] integrals involving the logarithmic 
function may contribute [Eqs. (49) and (52)] for O(t). 

The dependence of 0 = O( a,Tt) on Tt, for various values 
of a, is shown in Fig. 1 in the case of dimer filling with range-
2 cooperative effects. For autocatalytic rates, i.e., a> 1, 0 
is-in some neighborhood of zero-a convex function. 
Thus, as to be expected, adsorption accelerates only after an 
induction period23 in which filling is governed almost exclu­
sively by the (initiation) rate T. Further obServe that high 
autocatalytic rates lead to an almost instantaneous lattice 
saturation but not necessarily to a saturation coverage that 
exceeds the saturation value of any autoinhibitory rate re­
gime. For example, for a = 2, filling comes to an end [the 
saturation value is 0 * (2) = 0.8699] attime Tt = 1.7 approx­
imately. At this moment the adsorption process with 
a = 0.5 arrives at only 64% of its saturation value 
0·(0.5) = 0.8709, which, nevertheless, is greater than 
0*(2). Equality of coverages is achieved at about Tt = 86, 
i.e., 0(0.5,86) = 0(2,86). This may be appreciated (partial­
ly) in Fig. 1. In Fig. 2 we have shown the saturation coverage 
o * as function of a/ (1 + a). Note the curious fact that ran­
dom filling (a = 1) produces the least saturation coverage. 
The curve corresponding to range-1 cooperative effects 
(R • = 1) has been shown in Ref. 1, too. In Fig. 3, saturation 
coverages are shown for trimer filling with range-R * cooper­
ative effects, R * = 1,2,3. Realize that autoretardative rate 
regimes exhibit extraordinarily high saturation values only if 
cooperative effects are effectively of range R * = 3. 

This somewhat strange-looking (and up to our knowl­
edge not formerly observed) behavior of model I R-mer fill­
ing with range-R cooperative effects is due to occupational 
degeneracies of small-size gaps. As an example, we consider 
(model I) dimer filling and compare range-1 with range-2 
cooperative effects for a small a regime. It is the filling of 4-
and 6-gaps that exhibits fundamental differences (2-, 3- and 
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5-gaps show equal saturation values in both adsorption 
schemes): If R * = 2 all three doublets of a 4-gap become 
occupied with equal rate a2

T; on the average 2/3 sites remain 
therefore finally empty. If R * = I the middle doublet (rate 
T) is much more active than its two neighbor doublets (rates 
aT, a < 1 ); hence, at the end, almost surely two units remain 
unoccupied. As to a 6-gap, the situation is similar. For 
R • = 2 the middle doublet becomes occupied first (its rate T 

dominates over the competing rates Ta and Ta2) and the 
originating 2-gaps become filled later. If R * = 1, only the 
second, third, and fourth doublets compete for a first adsorp­
tion (with equal rate T); winning the second or third, two 
sites (of the initiaI6-gap) will finally remain empty, i.e., 4/3 
on the average. In summary, range-2 cooperative effects ex­
ploit space much better than range-l cooperative effects do. 
Similar considerations apply to trimer filling (Fig. 3), to 
weak autocatalytic (anticooperative) effects, i.e., a~l, and 
to high a regimes. In the latter case, R-mers grow about a 
nucleating R-mer to form an island. I

.
I
? Clearly, imperfec­

tions in island formation (holes) are less probable in the case 
of range-R cooperative effects; then an R-tuplet next to 
( touching) the island becomes occupied with rate TaR, 

which is to be compared with the (much smaller) rate TaR * 
if cooperative effects are restricted to range R * <R. This 
explains the behavior of 0 * (Figs. 2 and 3) for a- 00 • 

E. Model II 

While in model I each filled site-within the influencing 
environment of width R 4I---rontributes to a rate modifica­
tion, in model II a change in the adsorption rate will be due 
only to the existence or nonexistence of filled neighboring 
sites (independent of their number). More precisely, it will 
be assumed that the basic rate T is changed by a factor a if at 
least one unit-within range R * <R-is filled, i.e., 

R* 

r .- , 
aT aT aT aT aT 

} aT aT aT aT aT .... 
R·. 

(T1,i) = aT aT aT aT aT 

aT aT aT T T 

aT aT aT T T 

If R * = 1 only the adsorption rates of R-gaps differ in mod­
els I (a2T) and II (aT). This causes slight differences in the 
time behavior of the respective lattice coverages (differences 
are so tenuous that they would be hardly visible in Fig. 5) but 
the saturation coverages of both models clearly coincide (see 
Figs. 2-4). 

For dimer filling with range-2 cooperative effects, mod­
els I and II behave quite differently in the a-oo limit (Fig. 
2). Whereas, in model I, a saturation coverage of unity is 
achieved by perfect island formation,!,17 in model II island 
formation is "imperfect" (full of holes) and ~ of the lattice 
remains finally empty. Clearly, in model II, the two doublets 
next to an (actual) end ofthe "island" have equal rates Ta 
and compete with each other for adsorption (such a compe-
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tition does not exist in model I since rates are rather unlike: 
1"a2>1"a). Thus, half of the dimers will not stick close to the 
"island" but will leave a one-unit hole. An easy method [not 
relying upon Eqs. (50) or (53)] to determine 
() * ( 00) = lima...... () * (a) is the following. Consider a linear 
lattice of n sites. First, put a dimer on sites 1-2-3 at random. 
If it landed on sites 1-2 (2-3) place a second dimer on sites 
3-4-5 (4-5-6) randomly. Continue in this way until the 
lattice is saturated and call the average number of finally 
unoccupied sites an' Then a1 = 1, a2 = 0, a3 = 1, and an 
=!(1 + an _ 3 + an _ 2 ), n = 4,5, .... Furthermore, 

1- ()*(oo) = lim anln =!. _ .. 
Similar recursion relationships may be derived for any 

I<R *<R. We only state two furtherresults. For R = 3 (see 
Fig. 4), 

(~ if R * = 2, 
lim () *(a) = ' a...... i, if R * = 3. 

F. FIlling In stages 

The limiting rate regime of R-mer filling in stages1
,2,7,24 

can be solved exactly for range-R * (arbitrary) cooperative 
effects. This has been shown in Ref. 1 where the case of 
monomer filling (in stages) is treated in detail. Here we con­
sider R-mer filling occurring in 2R * + 1 (R *<R) stages, 
consecutively, with no filled sites in the cooperative range 
R *, with just one [(R + 2R * - I)-gap], then two 
[(R + 2R * - 2)-gap] filled R *th nearest neighbors, etc. 
Clearly, this occupation procedure is the a iD limit of model I 
with range-R * cooperative effects. Calling the respective sat­
uration coverage () r (R *,R) we obtain from Sec. VI D and 
Eq. (50) 

()r(R *,R) = 1 - 2e- 2W ) f (1 -x)xP 

X [ R (R - R *) + Ri~ 1 (R - R * + i)xi 

(60) 

where 

R+R*-l Sk 

p=2(R-R*), s(s)= L -, 
k=l k 

{

n, n = R, ... ,R + R * - 1, 

qn= n_ 2R (n-R-R*+1), n =R +R *, ... ,2R - 1, 
n-2R*+1 

R = R * + 1,R * + 2, ... , R * = 1,2, ... , 

and, in the case R = R *, 

qn = n - 2R 1(2R + 1 - n), n = R, ... ,2R - 1. 

In Table I, we catalog ()r(R *,R) for R * = 1, ... ,R, 
R=2, ... ,8. 

The aiD limit of model II with range-R * cooperative 
effects corresponds to R -mer filling in two stages. In the first 
stage (identical to the first filling step in the above-described 
model) only R-tuplets with no filled sites in the cooperative 
range R * become (randomly) occupied, i.e., filling termin­
ates when only R-, (R + 1)-, ... ,(R + 2R * - I)-gaps re­
main. These, in the second stage, are then filled randomly. 
Denoting the thus-arising saturation coverage by 
() 1(R *,R) we observe that differences between () r(R *,R) 
and () 1 (R *,R) are due only to different filling of 2R-, 
(2R + 1)-, ... , (R + 2R * - 1 )-gaps. Particularly, if 
2R * + 1 <R, then ()r(R *,R) = ()1(R *,R). If 
2R * - 1 >R, then () t (R *,R) < () 1 (R *,R) since the deter­
ministic filling [in the second, third, ... , (2R * + 1) st stage] 
of model I does not admit close packing whereas the random 
filling (in the second stage) of model II certainly does. A 
comparison of Tables I and II [in the latter are shown 
()1(R *,R), R * = 1, ... ,R, R = 2, ... ,8] corroborates these 
considerations. Clearly, a closed form expression for 
()1(R *,R) [very similar to that of()t(R *,R)] iseasilyob­
tainable from Eq. (50) and therefore will not be stated. 

VII. DISCUSSION 

By means of a generating function technique we have 
studied the kinetics of R-mer filling with general range-R 
cooperative effects. The exact closed form expression for the 
lattice coverage obtained here embraces formerly gotten ex-

TABLE I. Saturation coverages B r(R ',R) for R-mer filling in 2R' + 1 stages (alO limit of model I with range-R • cooperative effects); see Eq. (60). 

R' 2 3 4 5 6 7 8 

R =2 0.8022 0.9009 
R=3 0.7829 0.7656 0.8639 
R=4 0.7737 0.7557 0.7520 0.8433 
R=5 0.7682 0.7518 0.7434 0.7456 0.8298 
R=6 0.7647 0.7499 0.7404 0.7369 0.7421 0.8202 
R=7 0.7622 0.7489 0.7393 0.7338 0.7333 0.7401 0.8129 
R=8 0.7603 0.7483 0.7390 0.7327 0.7298 0.7311 0.7390 0.8070 
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TABLE II. Saturation coverages er(R *,R) for R-merfilling in two stages (alO limit ofmode1 II with range-R * cooperative effects). 

R* 2 3 4 5 6 7 8 

R=2 0.8022 0.9009 
R=3 0.7829 0.7888 0.8689 
R=4 0.7737 0.7557 0.7857 0.8531 
R=5 0.7682 0.7518 0.7527 0.7851 0.8437 
R=6 0.7647 0.7499 0.7404 0.7540 0.7854 0.8375 
R=7 0.7622 0.7489 0.7393 0.7387 0.7563 0.7859 0.8331 
R=8 0.7603 0.7483 0.7390 0.7327 0.7402 0.7588 0.7867 0.8299 

plicit results for R-mer filling with nearest neighbor cooper­
ative effects.4 ,6,16,18 

Figures 1 and 5 reveal that the kinetic behavior of range­
R cooperative processes is-for short times-quite similar to 
that of filling processes with nearest neighbor cooperative 
effects.6,16,18 However, the law (valid for nearest neighbor 
cooperative effects) that "anticooperative rate regimes lead 
to a lower saturation level since R-mers tend to avoid each 
other, leaving gaps that cannot be filled6

" is no longer true 
for genuine range-R cooperative effects (see Figs. 1-4). 

The kinetics of an irreversible process, where R 1-' Rn 
00', and Rr-mers (with relative frequencies PI>O, P2>0,00., 
and Pr > 0, respectively) are placed randomly onto a linear 
lattice, has been considered recently.13 An analysis of the 
more general problem, where occupation occurs cooperative­
ly, seems to be much more involved. However, certain relat­
ed problems such as competition between different mon­
omer types on homogeneous3 and nonuniform21 (e.g., 
periodic and stochastic copolymers) lattices and special 
cases of competition between monomers and dimers3 have 
been treated successfully. 
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APPENDIX A: A NOTE ON THE GENERATING 
FUNCTION TECHNIQUE 

Here we illustrate the "nonuniqueness"of the generat­
ing function approach by means of a simple example (which 
corresponds to random dimer filling; bIt denotes the number 
of empty sites in a I X n lattice). Given the difference equa­
tion 

(n -1)b" - (n - 2)b,,_1 = 2b"_2' n = 3,4'00" 
(AI) 

with initial conditions 

b l = 1, b2 = 0, (A2) 

we want to know the behavior of b,. as n_ 00. Since (A 1) is 
valid for n = 3,4'00" it appears to be convenient to introduce 
the generating function 
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GO 

A(s) = L b,.s"-I. (A3) 
,,=3 

With this choice (AI) becomes 

A '(s) - [2s/0-s)]A(s) = 2s/0-s), 

which is to be solved subject to the condition A (0) = O. We 
find 

A(s) = 20-S)-2 [0- t)t~(t-.) dt 

and hence 

b = lim .l!.!.. = 2 t (1 - t)t~(t- I) dt. 
n_co n Jo (A4) 

The proposed task is thus accomplished. However, the 
choice in (A3) is arbitrary (i.e., we could have defined the 
generating function in any other way) and a natural question 
arises: Would another definition have led to a different re­
sult? Obviously, the numerical value of b [which is uniquely 
determined by the recursion relation (A 1 ) together with the 
initial condition (A2)] cannot depend on the choice of the 
generating function. But what may depend on the specific 
form of the generating function is the representation of b 
(i.e., the algebraic expression giving b). To explore such a 
possibility let us try, for example, 

GO 

B(s) = L b"s"-I. (A5) 
,,=1 

With this definition, (AI) is converted into the homogen­
eous equation 

B'(s) - [2s/(1-s)]B(s) =0, 

whose solution, satisfying B(O) = 1, is given by 

B(s) = (1 - s) -2e - 2s. 

Hence 

b=e- 2
• (A6) 

This shows that different choices of the generating func­
tion [here (A3) and (A5)] will generally lead to different 
representations [here (A4) and (A6), respectively] of the 
same object (namely. b =lim,,_oo bllln). We emphasize the 
fact that the equality of ( different) representations is given a 
priori and must not be proved a posteriori. Thus, in the pres­
ent example, the equality of the expressions on the right­
hand sides of (A4) and (A6) holds true without further 
proof. 
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Since different representations may be rather unlike 
[compare (A4) with (A6)] it is always worthwhile to look 
for that generating function (this is by trial and error) that is 
accompanied by the most appropriate (simple) representa­
tion. Clearly, one could work with a single generating func­
tion [e.g., that introduced in (A3) ] and try to transform (if 
necessary and/or desirable) the corresponding representa­
tion [e.g., evaluate the integral in (A4)]. However, labor 
thus involved is generally so heavy that it is more advanta­
geous to introduce changes in the definition of the generating 
function and to examine the effects on the associated repre­
sentations. Such an approach has been used successfully 10. I I 

and proves to be most helpful in the present paper, too. 

APPENDIX B: DERIVATION OF RATE EQUATIONS 

Recall Eqs. (10) and (11), let n;;;.R, and consider a lat­
tice of n + 2R sites (as described in Sec. II). Due to our 
boundary condition there are initially n-R + 1 R-tuplets. 
Numbering these from left to right, 0, 1, ... ,n - R, we observe 
that the occupation ofaftrst R-tuplet, thejth, say, subdivides 
the lattice into two sublattices (of j and n - R - j empty 
sites), which are subsequently subject to further filling under 
the same boundary condition as the original lattice was, i.e., 
the R sites on both their ends belong t<r--and only t<r--the 
influencing environment of neighboring sequences of R 
filled sites. (Note that this affirmation would not be true if 
cooperative effects were of range R * > R.) Since, within the 
time interval (O,h), the just-considered event occurs with 
probability Tj." _ R _ jh + 0 (h) and since "nothing" happens 
with probability 1 - d" _ R h + o(h) it therefore follows that 

or 

n-R 
+h L (Tj.n_R_j+T"_R_j)~(t) +o(h) 

j=O 

n-R 
+ L (Tj.n-R-j + Tn-R-jJ)Nj(t), n;;;.R. 

j=O 

(Bl) 

On observing Eqs. (7)-(11) and (13), Eq. (B1) becomes 

dN,,+R(t) 
----'--- = - d"N"+R (t) + nd", n = 0,1, ... ,R - 1, 

dt 
(B2) 

" + LT,,-I(NI+R(t) -i-R) 
1=0 

+ (n + R)d"+R' n = 0,1, ... ,R - 1, 
(B3) 

and reduces to (15) for n = 3R - 1, 3R, ... . The solution to 
(B2), obeying the initial condition (6), is 

Nn+R(t)=n+Re- d
.', n=O,l, ... ,R-l. (B4) 
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Introducing (B4) into Eq. (B3) gives 

dN,,+2R (t) 
-----'---= -d"+RN,,+2R(t) + (n +R)d,,+R 

dt 

" " -R LT; +R LT,,_;e-d,t. (B5) 
1=0 ;=0 

Imposing the initial condition (6), Eq. (B5) yields (17). 

APPENDIX C: R-MER FILLING WITH RANGE-R 
BLOCKING 

As pointed out by a referee, R-mer filling with range-R 
blocking is isomorphic to 2R-mer random filling (see also 
Ref. 1). This observation permits a cross-check on Eq. (56). 
From the scheme [where R = 2 and where l's (O's) repre­
sent occupied (empty) sites] 

... 0011000001100001100011001100 ... 
.... 11110001111001111011111111... ' 

we learn that 

2(J* = (J', (C1) 

where (J' denotes the saturation coverage for 2R-mer ran­
dom filling. Now, from (55), 

I
I 2R-I 

(J' = 1- 2e- 2S(1) (l-x) L nx"e2,(x) dx. (C2) 
o ,,=0 

On the other hand, from Eqs. (40) and (41) of Ref. 11, 

(J' = 2Re- 2'O) fe2S(X) dx (C3) 

and 

(J , = 4Re - 2S0) fx2Re2'(X) dx, (C4) 

respectively. Subtracting (J' /2 [in the form given by Eq. 
(C4)] from (C3) gives 

(J'/2 = 2Re- 2W ) 11 (l_x2R )e2,(x) dx 

I
I 2R-I 

=2Re- 2,O) (1-x) L x"e2,(X)dx. 
o ,,=0 

(C5) 

Finally, on subtracting (C5) from (C2) and on observing 
(C1) we recover (56). Note that it is a somewhat tricky 
exercise to prove the equality of representations (C2 )-( C4) 
by methods of integration. 
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On the phase transition of the three-dimensional Percus-Yevick equation 
for an arbitrary potential of finite range 
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(Received 14 June 1985; accepted for publication 28 February 1986) 

A qualitative study of the three-dimensional Percus-Y evick (PY) equation by means of Baxter's 
relations is considered for an arbitrary potential of finite range I by a perturbation method. It is 
shown that the PY equation has a unique solution Y(r,Tf/3 §) and a unique solution Q(r,Tf/3 §) if 
the following conditions are satisfied: (i) 0 < Tf < 0.175, (ii) 0 <[3 § < ([3 § )0' (iii) 
SUPrE[O,/ J IQn 1< n! and SUPr> 0 I Yn (r) 1< n!, where both Q and Yare continuous functions of the 
reduced density Tf, and can expressed as absolutely and uniformly convergent series 
Y = ~: = 0 (lin!) ([3 § )nYn (r,Tf), Q = ~: =0 (lin!) ([3 § )nQn (r,Tf) within the radius of 
convergence of the inverse reduced temperature ([3 § )0' As functions of r, QEC(O)[O,l] with 
Q(l) = 0, whereas Yis continuous for r>O except for a possible finite discontinuity at r = 1, and 
Y - r--+O exponentially as r~ 00. Based on the solution of Yand Q, the isothermal compressibility 
KT = KT(aploPh is a continuous and bounded function of Tf· As Tf~Tfc = 0.175, KT becomes 
divergent. The critical density Tfc (or Pc) is independent of the range of the attractive potential/. 
On the other hand, the critical temperature ([3 § ) c is determined by the positive root of 
F([3 §) = 12TfSb Q(r)dr = 1, which depends explicitly on the value of I. 

I. INTRODUCTION 

Consider a classical system of N molecules in a volume 
Vand at temperature T. Suppose the potential energy of the 
system~(rl,r2, ... ,rN) can be expressed as the sum of pairwise 
intermolecular potential u(rij)' ~ = ~f<i<ju(rij)' where r; 
is the position oftheith molecule and rij = Ir; - rj I. In order 
to study the thermodynamic properties of the system, it is 
essential to know the radial distribution function g(r12 ), de­
fined by 

g(rI2 ) = V 2 J efi<P dr3 .. • drN {J efi<P dr l dr2 .. • drN} -I, 

(1) 

where [3 = lIkT, and k is the Boltzmann constant. 
Since g(r12)~1 as r12~OO, we define the total correla­

tion function h(rI2 ) between molecules 1 and 2 by 
h(r12 ) = g(r12 ) - 1. Following Ornstein and Zernike,1 the 
total correlation function h (r 12) can be written as the sum of 
the direct correlation function c (r 12) and an indirect correla­
tion function, which accounts for the correlation of mole­
cules 1 and 2 through a third molecule: 

(2) 

The convolution relation (2) is usually referred to as the 
Ornstein-Zernike (OZ) relation, which can be considered 
as the definition of c(r12 ). 

Several approximate integral equations for g(rI2 ) have 
been proposed in the past. It is generally accepted that the 
Percus-Yevick (PY) equation2 is the most successful the­
ory. In particular, the PY equation for the one-dimensional 
system of hard rods becomes an exact theory.3 

Let 

I(r) = efJu(r) - 1, 

y(r) = efJu(r)g(r), r = r 12 • 

The PY approximation assumes that c(r) vanishes outside 
the range of the intermolecular potential u (r) via the rela­
tion c(r) = !(r)y(r). The PY approximation in conjunction 
with the OZ relation (2) forms an integral equation for g(r) 
in terms ofy(r), 

y(r) = 1 + p J y(r')!(r') 

x [efJu(r- r'ly(r - r') - 1 ]dr'. (3) 

Equation (3) has been solved analytically for the hard 
sphere potential by Wertheim,4 Thiet,5 and recently by 
Chen.6 Wertheim also had considered an attractive potential 
with a range less than the diameter 0' of the hard spheres. 
However, his results were not conclusive. On the other hand, 
by expanding c(r) andy(r) in series of the density p, Groen­
eveld7 proved the existence of a unique solution of Eq. (3), 
which was analytic in the region B IP I < ( 4A) -I, where 

A = Sup {efJu(lr,-r,I)} < 00, 

and 

B = S~p {f [efJu(I" - ',I) - 1 ]dr2} < 00. 

In 1968, Watts8 solved the PY equation via Baxter's9 rela­
tions numerically by truncating the Lennard-Jones poten­
tial at r = 3.50', r = 50', and r = 60', respectively. It was con­
cluded that the PY equation exhibited a phase transition 
characterized by the divergence of the isothermal compress­
ibility with a critical density Pc close to the value 0.27, 
whereas the critical temperature was dependent upon the 
truncation of this potential. Moreover, outside the critical 
region the PY equation has two solutions, of which the one in 
the higher-density region was an unphysical solution. 

In a previous paper, 10 we have studied the PY equation 
by a perturbation method, where the attractive potential was 
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considered as a perturbation on the repulsive potential. 
However, the attractive potential was assumed to be ofinfi­
nite range and decreases to zero faster than r - S as r---+ 00. In 
light of the interesting results of Watts, in this paper we reex­
amine the PY equation by a perturbation method for the 
intermolecular potential u(r) = uo(r) - §v(r), where 
uo(r) denotes the hard sphere potential of diameter 1, and 
v (r) ;;0.0, the attractive part of the potential, is a C (2) function 
on (1,/) with v( 1) = v(l) = O. For convenience, lis taken to 
be a positive integer, and § denotes the maximum depth of 
the physical tail potential so that Maxlv(r) 1(1. The pertur­
bation series is constructed by making use of Baxter's rela­
tions and the PY approximation c(r) =f(r)y(r). Within 
the region of the absolute and uniform convergence of the 
perturbation series, we show that the PY equation has a 

unique solution y(r) for r> 0 if 0 < 7] < !(3 -17) = 0.175, 
or 1 < 7] < 2.66, and a divergent solution if 0.175 < 7] < 1, or 
7] > 2.66, where 7] = 1Tp/6. The solution y is a continuous 
function of r for r> 0, except for a possible finite discontin­
uity at r = 1, and is also a continuous function of 7]. Based on 
the solutiony, the isothermal compressibility is a continuous 
bounded function of 7] if 0 < 7] < 0.175, which becomes diver­
gent as 7]---+0.175. The critical density 7]c = 0.175 (or Pc 
= 0.33) is independent of the range of the attractive poten­

tial. On the other hand, the critical temperature depends 
explicitly on the range of the attractive potential. Qualita­
tively speaking, the results we have obtained are in agree­
ment with the numerical solution of Watts based on the Len­
nard-Jones potential. 

II. PERTURBATION SERIES 

Suppose c(r) = 0 for r>l. Baxter9 has shown that the 
OZ relation can be transformed into the following relations 
provided 

hew) = J lW'rlh(r) Idr is bounded for real w = Iwl: 

rc(r) = - Q' (r) + 127] r Q' U)QU - r)dt, O(r(/, 

(4) 

rh(r) = -Q'(r) + 127] fO (r-t)h(lr-tl)Q(t)dt, 

r>O (5) 

where Q(r) is a continuous function on [0,/] and Q(I) = O. 
Relations (4) and (5) are usually referred to as Baxter's 

relations (BR). In terms of the PY approximation 
c(r) =f(r)y(r), thePY equation can now be defined as Eqs. 
(4) and (5) with c(r) =f(r)y(r). For the hard sphere po­
tential, Baxter has solved Eqs. (4) and (5) for c (r) and 
Q(r). The solution of c(r) is identical to the solutions ob­
tained by Wertheim and Thiel. On the other hand, Eq. (5) 
can be reduced to a third-order retarded linear differential­
difference equation, by which the solution of y(r) can be 
obtained. 6 

Let u(r) = uo(r) - §v(r). If the attractive potential is 
considered as a perturbation on the hard-sphere potential, 
we can expand f( r) = e /3uo( r) + /3 §v( r) in the series of P §v (r) : 
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fer) =e/3uo(r) -1 + f .!. (P§)(n)[v(r)](n)e/3Uo(r) 
n=1 n! 

=fo(r) + f 1, (/3§)(n)f,. (r), 
n=1 n. 

(6) 

where/" (r) = e/3uo(r) [vCr) In. Since (/3 §) -I = KT /§ is the 
reduced temperature, the expansion offer) in (6) becomes 
an inverse temperature expansion. Consequently, we can 
write the following series expansions in /3 §: 

00 1 
y(r) = yo(r) + L ,(/3 § )ny" (r), 

,,= In. 

00 1 
her) = ho(r) + L - (/3 § )"h" (r), 

,,= In! 

00 1 
c(r) = co(r) + L - (/3 § )"c" (r), 

n=1 n! 

(7) 

(8) 

(9) 

(10) 

where Qo(r),yo(r), ho(r), andco(r) denote the unperturbed 
system with hard sphere potential uo(r), and 

h n (r) = e/3uo(r) ito C) [vCr) lY" _ i (r), n> 1, (11) 

cn(r) =e/3uo(r) ito C) [v(r)]~"_i(r) -Yn(r), n>1 

(12) 

are obtained by the relation c(r) = f(r)y(r). 
By substituting Eqs. (6) - ( 12) into Eqs. (4) and (5), we 

can obtain the following equations: 

rco(r) = - Q ~ (r) + 127] r Q b (t)QoU - r)dt, 

O(r(l, 

rho(r) = - Q b (r) + 127] f (r - t)ho( Ir - t I ) QoU)dt, 

r>O, (13) 

co(r) =!o(r)yo(r), 

Q ~ (r) = An (r) - 127] L (r - t)Q" U)dt 

- l27] r' YoU - r)Qn U)dt, O(r < 1, (14) Jr+ 1 

Q ~ (r) = Bn (r) + l27] r+ 1 QoU - r)Q ~ U)dt, 

l<r(/-l, (15) 

Q ~ (r) = B" (r) + 127] r Qo(t - r)Q ~ (t)dt, 

1- 1 (r(l, (16) 

Y" (r) = Q ~ (r) - 127] ~t: e) r QoU - r)Q ~ (t)dt 

-127] r Q"U-r)Q~(t)dt 
- 127] r+ 1 Qo(t - r)Q ~ (t)dt, O(r< 1, (17) 
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Yn (r) = Dn (r) + 1211 f Qo(r - t) Yn (t)dt, 

l<r<2, (18) 

Yn (r) = En (r) + 1211 f Qo(t) Yn (r - t)dt, 

r>2, (19) 

where Yn (r) = ryn (r),An (r),Bn (r),Dn (r), and En (r) de­
pend on Qm and Y m for m < n so that in the nth-order pertur­
bation, they can be considered as known functions. 

Note that Eq. (13) is precisely the PY equation for the 
hard sphere potential. It is known9 that 

Q (r) - 1 + 211 r _ 311 r _ 1 
0- 2(1-11)2 2(1-11)2 2(1-11)' 

O<r<l, 

and Yo (r) is a function of class C (2) on (1, (0) with the 
asymptotic condition [Yo(r) - r]-o exponentially as 
r-oo. For the following discussions it is not necessary to 
know Yo(r) explicitly. By Eqs. (14)-(19), we notice the 
following procedure of solving these set of equations: 

Eq. (16)-Eq. (15)-Eq. (14)-Eq. (18) 

-Eq. (19)-Eq. (17). 

Since we are not interested in the computation of the 
thermodynamic quantities of the system, it is unnecessary to 
carry out the explicit analytical solutions of Qn (r) and 
Yn (r). Rather, we are only interested in the qualitative dis­
cussions of the uniqueness and the properties of solutions of 
Qn (r) and Yn (r), and, particularly, their implications to the 
occurrence of phase transition, so that comparison with the 
numerical solution of Watts can be made. 

III. SOLUTIONS OF PERTURBATION SERIES 

In this section we consider the solutions ofEqs. (14)­
( 19) according to the procedure discussed in the previous 
section. 

(i) Q ~ (r) = Bn (r) + 1211 f+ I Qo(t - r)Q ~ (t)dt, 

l<r<l- 1, (15) 

Q ~ (r) = Bn (r) + 1211 f Qo(t - r)Q ~ (t)dt, 

1- l<r<l. (16) 

First, we note that Eq. (16) is well defined, whereas Eq. 
(15) depends on the solution ofEq. (16). Second, Q~, Q~, 
and Q ~' are continuous at r = I - 1, so that Qn is a class C (3) 

function on (1,/). On the other hand, in the first-order solu­
tion, BI(r) = -v(r)yo(r). Thus BI(l) =Q;(l) =0. By 
induction, we can show that Bn (l) = Q ~ (l) = O. But v',v N 

are not defined at r = 1 nor at r = I. Hence B~,B ~ may not 
exist at r = I. For this reason, Eq. (16) cannot be converted 
into a differential equation by setting the boundary condi­
tion at r = I. 

For convenience, denote J.l = 1211, t/J(r) = Q ~ (r), 
S(r) = Bn (r), and K(t - r) = t/Jo(t - r). Equations (15) 
and (16) can be rewritten as 
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t/J(r) = S(r) + J.l f+ I K(t - r)t/J(t)dt, l<r<l- 1, 

(15') 

t/J(r) = S(r) + J.l f K(t - r)t/J(t)dt, 1- 1 <r<l. 

( 16') 

Although K is a continuous function in t and r on 
[ 0, 1 ] X [0, 1 ], it also depends on the parameter J.l (or 11). 
Thus IK I is not necessarily bounded for all J.l. In order to 
obtain a unique solution t/J of Eqs. (15) and (16), which is 
not only continuous in r on [1,/], but also bounded in J.l, we 
shall impose a rather strong restriction on K, which can be 
shown to be related to the possibility of a phase transition. 

Let C(o)[ 1,/] be the space of continuous functions on 
[1,1] with a metric function d defined by the supremum 
norm. If t/J is any function of C (0) [ 1,1], we define an operator 
If acting on t/J by 

(r+ I 

S(r) + J.l J K(t - r)t/J(t)dt, (15') 

l<r<l-l, 
(lft/J)(r) = 

S(r) + J.l f K(t - r)t/J(t)dt, (16') 

1- l<r<l. 

Since S is continuous on [1,1], it is clear that If t/JEC (0) [ 1,/]. 
Thus If transforms C(O) [1,1] into itself. Next, let t/J, 
~EC(O)[ 1,/]. Then 

and 

Ilft/J - lf~l< [f+ I IJ.lK(t - r) Idt ] d(t/J,~), 
if l<r<l- 1, 

Ilft/J - lf~I<[f-r IJ.lK(t)ldt ] d(t/J,h 

< [f IJ.lK(t) Idt ] d(t/J,~), 
if 1- l<r<l. 

Hence d(lf t/J,lf~) < [S~ IJ.lK(t) Idt ]d(t/J,~), and If be­
comes a contraction operator if 

1J.l1 f IK(t) Idt < 1. (20) 

But C (0) [1,1] with the metric d is a complete metric space. 
Hence, there exists a unique t/JEC (0) [ 1,1], which satisfies Eqs. 
(15) and (16) if condition (20) is valid. 

The function t/J can be constructed in the following man­
ner. 

(1) For 1- 1 <r<l, Eq. (16) can be solved by iteration 
method, that is, 

00 

t/J= L J.ln'l'n,'I'O=S(r), 
n=O 

and 

'I' n (r) = f Kn (tn - r)S(tn )dtn 

with 
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and 

K"(t,, -r) = it"K,(t" -t,,_dK,,_dt,,_, -r)dt"_,, 

(2) By the solution of r/J on [/- 1,/], we can solve Eq. 
( 15) by backward continuation. Consider re [/ - 2,/ - 1]. 
Then 

r/J(r) = S(r) + Il L- I 

K(t - r)r/J(t)dt 

1
,+1 

+ Il I_I K(t - r)r/J(t)dt, 

and, again, r/J can be obtained by iteration method. This pro­
cess can be repeated until the interval [1,2] is reached. 

Alternatively, Eq. (15) can be transformed into a third­
order linear differential-difference equation of the advanced 
type: 

Q'"(r) -~Q"(r) 
" 1-1]" 

181]2 Q' (r) + 121]( 1 + 21]) Q (r) 
+ (1_1])2" (1_1])2" 

=B"(r)- 61](1]+2) Q'(r+l) 
" (1_1])2" 

+ 121](1 +21]) Q (r+ 1). (21) 
(1 - 1])2 " 

Equation (21) can also be solved by the method of backward 
continuation. For example, in the interval [I - 2,/ - 1], the 
right-hand side (rhs) of (21) is considered as given. By the 
solution of Eq. (16), we can compute Q" (1- 1), 
Q ~ (1- 1), and Q : (1- 1). These are the boundary condi­
tions for Eq. (21). It then follows that there exists a unique 
function Q" of class e (3) on (I - 2,1 - 1) that satisfies the 
boundary condition at r = / - 1. This process can be repeat­
ed until the interval [1,2] is reached. The solution obtained 
in this manner is of class e (3) on ( 1,/ - 1) provided condition 
(20) is valid. 

(ii) Q ~ (r) = A" (r) - 121] f (r - t)Q" (t)dt 

- 121] rl 

Yo(t - r)Q" (t)dt, O<r< 1. 
Jr+1 

Let 

a = 121] l' tQ" (t)dt, 

b = 121] f tQ" (t)dt, 

c = - 121] f Q" (t)dt, 

d = - 121] f Q" (t)dt, 

mer) = - 121] t Yo(t - r)Q" (t)dt, O<r< 1. 
1.+1 

Equation (14) can be rewritten as 
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(14) 

Q~(r) = [A,,(r) +m(r)] + (a+b)r+ (c+d), 
(14') 

whereA" (r), mer), b, andd are given, and a and c are yet to 
be determined. If we set up the boundary condition at r = 1, 
we can easily obtain a continuous function Q" (r) in [0,1] 
that satisfies the boundary condition Q" ( 1) computed from 
the solution of Q" (r) in [1,/ - 1]. 

To summarize, there exists a unique continuous func­
tion Q" (r) on [0,/], which satisifes Eqs. (14)-(16) pro­
vided condition (20) holds. 

(iii) Y" (r) = D" (r) + 121] f Qo(r - t) Y" (t)dt, 

1<r<2. (18) 

Since Q" is of class e(3) on (1,1- 1], D" is also of class 
e (3) on (1,/ - 1]. Equation (18) can be transformed into a 
third-order linear differential equation 

Y'"(r) + ~ Y"(r) + 181]2 Y' (r) 
" 1-1]" (1_1])2" 

- 121](1 +;) Y,,(r) =D:'(r), (18') 
(1 -1]) 

with boundary conditions 

Y,,(2) =D,,(2) + 121] 12 Qo(2-t)Y,,(t)dt, 

Y~(2) =D~(2) -~ Y,,(2) 
1-1] 

+ 121] f Qo(2-t)Y,,(t)dt, (22) 

Y"(2) =D"(2) -~ Y' (2) _ 181]2 Y (2) 
" " 1 -1]" (1 _1])2 " 

+ 121](1 + 21]) r2 
Y" (t)dt. 

(1_1])2 JI 
Now that Eq. (18') is a third-order linear inhomogeneous 
differential equation, the general solution can be obtained 
easily. By the boundary condition (22) we can then obtain a 
unique Y" ofclasse(3)on (1,2]. 

(iv) Y" (r) = E" (r) + 121] f- I Qo(r - t) Y" (t)dt 

= E" (r) + 121] f Y" (r - t)Qo(t)dt, 

r>2. (19) 

It can be checked thatD" (2) = E" (2). However, since 
Q" is at most of class e(l) on [/- 1,1], Eq. (19) cannot be 
converted into a differential difference equation. 

In the first-order solution, 

E, (r) = - v(r)yo(r) - Q i (r) 

+ 121] f dt(r - t)ho( Ir - t 1 )Qo(t). 

ThusE,(r)-+O exponentially as r-oo. By Eq. (19) we can 
obtain the inequality 
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and 

YI(r +~) - YI(r) 

= 121/ {f--I
I 
+ A QO(r + ~ - t) YI (t)dt 

+ f+A QO(r+ ~ - t)YI(t)dt} 

-<>as~-<>. 

Hence, YI is continuous for r>2 and YI (r)-<> as r-+oo. 
Let 

YI(s) =i"" YI(r)e-S'dr, 

EI (s) = i"" El (r)e - sr dr, 

GI(s) =F't(s) + 121/ f [f-t Y1(u)e-Sudu] 

xQo(t)e- st dt, 

RI(s) = 1 - 121/ f Qo(t)e- st dt 

= S-3e - sCR (s)e' + L(s) J = S-3e - SHes), 

G(s) =re'GI(s), 

where 

R(s)=r+~.r+ 181/2 s- 121/(1+21/) 
1-1/ (1_1/)2 (1_1/)2 

L(s) = 121/(1 _1/)-2[ (1 + 21/) + (1 + !1/)s). 

The Laplace transform of Eq. (19) yields 

YI (s) = G(s)[R(s») -I. (23) 

Except for the triple roots at the origin, it can be shown that 
all roots of R(s) lie in the left-hand side of the complex s 
plane.6 We can arrange the roots in order of nondecreasing 
absolute value with roots of equal absolute value set in any 
prescribed order. Let {sn} be a sequence of roots arranged in 
this manner. The inverse Laplace transform of (23) yields 

co 

Y1(r) = L Pm-I (r)e'm
', (24) 

m=1 

where Pm_I (r)e'm' denotes the residue of e"G(s) [R(s»)-I 
at a zero Sn of R(s), and Pm - 1 (r) is a polynomial with a 
degreeofm - 1 at most ifsm is an m-multiple root. By Theo­
rems 6.5 and 6.6 of Bellman -Cooke, II the series expansion in 
Eq. (24) is convergent for r>2 and uniformly convergent 
over any finite interval for r>2. Since YI is continuous and 
YI-<> as r-+ 00, the residue at s = 0 must be zero. Thus, by 
Eq. (24), YI-+O exponentially as r-+oo. 

The solution described for YI (r) can be generalized for 
all orders of perturbation. By induction, we can conclude 
that Eq. (19) has a unique solution for r>2, which can be 
expressed as a uniformly convergent generalized Fourier se­
ries type of expansion as given in Eq. (24) over any finite 
interval for r>2. Furthermore, Yn (r)-+O exponentially as 
r-+oo. 
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It is interesting to note that Eqs. (15), (16), and (19) 
are special cases of 

1
{J('l 

Y(r) = D(r) + f-l K(t,r) Y(t)dt, r>O, 
a(,) 

(25) 

whereD,a,parecontinuousonII = [0,00 ),O<a(r) <per), 
and K is continuous on R = II XI2 with 12 = [inf a(r), 
Supper) ). 

Let C (0) (/1) be endowed with the metric d defined by the 
supremum norm. If Y, YEC (0)(/1) , then 

d(LY,LY) <.d(y,n [1f-lISup [(') IK(t,r)ldt] , 
reI, a(,) 

where L is an operator which transforms Y into 

l
{J(,) 

LY = D + f-l K(t,r) Y(t)dtEC(O)(/I)' 
a(,) 

Thus, Eq. (25) has a unique solution Yin C(O)(/l) if 

l
{J(,) 

If-ll Sup IK(t,r)ldt< 1. 
reI, a(,) 

(26) 

This solution can be expressed as an absolutely and uniform­
ly convergent series Y(r) = };;;'=o f-ln IIIn (r), where 

lIIo(r) = D(r), 

f
P(r) 

III n (r) = K(t,r) III n _ I (t)dt, n;;;d. 
a(r) 

If we set a(r) = r - I, per) = r, and K(t,r) 
= Qo(r - t), then condition (26) becomes condition (20). 

n-I (n) 
(v) Yn (r) = Q ~ (r) - 121/ i~1 i 

xl' Qo(t-r)Q~(t)dt 

- 121/ r Qn (t - r)Q ~ (t)dt 

-121/ f+' Qo(t-r)Q~(t)dt, O<.r<1. 

(17) 

By the solutions of Eqs. (15) and (16), Yn can easily be 
obtained by Eq. (17). However, Yn may have a finite discon­
tinuity at r = I. 

Based on the solutions of Eqs. (14)-(19), we can con­
clude that, to every order of P §, the PY equation has a 
unique solution Yn (r, 1/) and a unique solution Qn (r, 11) if 
I 21/f6 IK(t) Idt < 1. As a function of r, QnEC(O)[l,1] and 
Yn EC(O) [0, 00) except for a possible finite discontinuity at 
r = 1. Furthermore, Yn -+0 exponentially as r-+ 00. On the 
other hand, by Qo, both Qn and Yn are also continuous func­
tions of 11 within the region specified by condition (20). 

IV. CONVERGENCE OF PERTURBATION SERIES AND 
PHASE TRANSITION 

We now examine condition (20) in detail. According to 
the expression of Qo, condition (20) implies 

0<11 < !(3 - Ii) = 0.175, or 1 < 11 < 2.66. Thus, in terms of 
the parameter 11, the PY equation has two disjoint branches 
of solutions, one in the region 0 < 11 < 0.175, and the other in 
the region 1 < 11 < 2.66. The solution for 11 > 1 must be con-

M. Chen 1856 



                                                                                                                                    

sidered as an unphysical solution because '1/ (or p) is too 
high. As '1/-'1/0 = 0.175, 12'1/Sb IK(t) Idt-l, and the se­
quence obtained by successive iterations will no longer form 
a Cauchy sequence. Thus Qn and Yn become divergent. If 
'1/ > 0.175, then 12'1/Sb IK(t) Idt > 1, and the operators!l' or 
L defined in Eqs. (15) and ( 16) or Eq. (25) are not contrac­
tion operators. In this case, uniqueness of the solutions for 
Eqs. (15) and (16) or Eq. (25) cannot be guaranteed. For 
example, suppose v is at least twice-differentiable, and v is 
also flat enough near r = I so that v (I) = v' (I) = v" (I) = O. 
In this case Eq. (16) also can be transformed into a third­
order linear differential equation, and Eq. (15) can be solved 
via a differential-difference equation of advanced type for 
re[ 1,1- 1] with the solution ofEq. (16) as initial condition 
for re[l- 1,/]. But Eqs. (15) and (16) depend on '1/. It is 
impossible to examine the '1/ dependence of Qn unless explicit 
solutions can be obtained. For this reason, condition (20) is 
absolutely necessary. 

Suppose 0 < '1/ < 0.175. Then SUPIE[O,1 J IQn I and 
Sup,>o I Yn I are continuous and bounded functions of '1/. So 
far we have not been able to estimate the upper bound of Qn 
and Yn • But, for any fixed '1/E(0,0.175), ifSuplQn I <n! and 
Sup I Yn I < n!, then the perturbation series for Q and Yare 
absolutely and uniformly convergent for 0 </3 § < (.8 § )0' 
where (/3 § ) 0 is the radius of convergence of/3 § which may be 
greater than 1. To summarize, suppose the following condi­
tions are satisfied: 

(i) 0<'1/<0.175, 

(ii) 0 </3 § < (/3 § )0' 

(iii) Sup IQn 1< n!, Sup I Yn 1< n!. 
IE[O,/l ,<0 

Then the PY equation has a unique solution Q( r, '1/,{3 §) and a 
unique solution Y(r,'1/,{3 §), where Qis continuous in '1/,/3 §, 
and, as a function ofr, QEC(O) [0,/] . Similarly, Yiscontinuous 
in '1/, /3 §, and as a function of r, Y is continuous except for a 
finite discontinuity at r = 1. Furthermore, Y - r-o expon­
entially as r_ 00 • 

Since no explicit solutions for Q nor Y have been ob­
tained, it is almost impossible to study the critical region in 
terms of the critical exponents so that comparison with other 
well known results can be made. 12 However, based on our 
qualitative discussions of Q and Y, some interesting conclu­
sions can be obtained as follows. 

( 1) The isothermal compressibility equation can be 
written as13 

kT(OP) =KT=I+24'1/ (00 r[g(r)-I]dr, (27) 
op T Jo 

which can be rewritten as9 

1 (oP) il 

- - = 1 - 24'1/ rc(r)dr 
kT op T 0 

= [1 - 12'1/ f Q(r)drf, (28) 

where P is the pressure. By definition, g( r) = 0 for r < 1, and 
g(r) = eP§V(')y(r) for r> 1. Thus, by the absolute and uni­
form convergence of Q and Y, K T is a continuous bounded 
function of '1/E(0,0.175). As '1/-0.175, KT-oo, and, as 
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'1/>0.175, KT is no longer a unique function of '1/. From a 
physical point of view, it is essential that KT is a unique, 
continuous, bounded function of '1/ outside the critical re­
gion. In this sense, '1/ e = 0.175 can be identified as the critical 
density. It is interesting to note that '1/ e = 0.175 corresponds 
tOPe = 0.33, which is close to the critical density Pc = 0.27, 
obtained by Watts for the Lennard-Jones potential. More­
over, the value of '1/ e is independent of the range of the attrac­
tive potential. On the other hand, by Eq. (28), the critical 
temperature (/3 § ) e is determined by the condition 
F(/3§) = l,whereF(/3§) = 12'1/SbQ(r)dr=0.Itisevident 
that (/3 § ) e depends explicitly on the range of the attractive 
potential. 

(2) Since Yn-o exponentially as r-oo, by Eq. (24), 
the closest root SI of R(s) to the origin in the left half-plane 
therefore determines the asymptotic behavior of Yn • For 
r>l, wehaveh(r) -R(/3 §,'1/)e"'lr, whereR(/3 §,'1/),denotes 
the residue at SI' Thus her) decays exponentially for large r. 
However, SI is a function of '1/, which does not vanish at'1/e 
= 0.175. Hence, her) does not have the long-range behavior 

of lIr in the critical region. 12 The divergence of the isother­
mal compressibility at the critical point is due to the diver­
gence of g(r) rather than the long-range asymptotic behav­
ior of lIr. 

(3) The energy equation can be written as 13 

3 II U = - N/3 -I + 12'1/N rv(r)g(r)dr, 
2 1 

which is related to the Helmholtz free energy A by 

U = [ o(A IT)] . 
o(lIT) v 

At very high temperatures, vCr) is negligible compared to 
kT, and thus the intermolecular potential u (r) becomes the 
hard sphere potential. Hence, the free energy A can be ob­
tained by integrating the energy equation: 

~= ~§_I-Ud(/3§)' 
NkT Jo /3§ 

A lP§ II = _0 + 12'1/ d(/3§)' rv(r)g(r), 
NkT 0 1 

(29) 

whereAo is the free energy of the hard sphere potential. Since 
g(r) can be expanded in series of /3 §, we can write 
A = Ao + /3 §A 1 + /3 §Az + .... To the first order we have 

A A t 
NkT = NkoT + 12'1//3 § JI rv(r)go(r)dr. (30) 

For the square-well potential, we have computed A 1 and Az 
(see Ref. 14). Compared with the Monte Carlo calculations, 
the result for A 1 was excellent. The result for Az was very 
good at low densities. However, at high densities, it appeared 
to be too small in absolute magnitude. It is interesting to note 
that Eq. (30) also can be obtained by considering the sta­
tionary solution of a kinetic equation of the Enskog-Vlasov 
type studied by de Sobrino1s and by Grmela. 16 By Eq. (30) 
we can obtain an equation of state similar to the van der 
Waals equation of state. For the PY theory, goer) can be 
expressed in terms of elementary functions with extremely 
complicated coefficients in '1/. It is thus impossible to study 
Eq. (30) analytically. 
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To conclude, from a qualitative point of view, our re­
sults seem to be in agreement with the numerical solution of 
Watts. We have also identified the critical point with the 
following possibilities: (i) g(r) is divergent so that the iso­
thermal compressibility KT is also divergent; and (ii) g(r) 
may have multiple solutions, among them one is divergent. 
Thus, there is no unique K T at the critical point. The second 
possibility is closely related to the Kirkwood-Monroel7 the­
ory of phase transition, which is defined as a discontinuity in 
g(r) when the thermodynamic parameters 1] and/3 § are var­
ied. 
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The upper bound for the ultraviolet stability of the two-dimensional cosine interaction 
SA :CoS a'Ps :ds, A C R2, in finite volume A is proven for a 2 E [417',817'[, where the theory has been 
shown to be superrenormalizable [see, e.g., G. Gallavotti, Rev. Mod. Phys. 57, 471 (1985)]. 
Ultraviolet stability in this interval was proven previously (F. Nicolo, J. Renn, and A.Steinmann, 
"On the massive sine-Gordon equation in all regions of collapse," preprint II U niversita di Roma, 
1985). Here we give a second proof using renormalization group methods based on a multiscale 
decomposition of the field by showing that the large fluctuations may be controlled by their small 
probability. The method essentially follows the one given by Nicolo [F. Nicolo, Commun. Math. 
Phys. 88, 681 (1983)] for a 2 

E [417',¥17'[. 

I. INTRODUCTION 

A. Purpose and outline 

The two-dimensional sine-Gordon model has been 
studied as a problem in constructive quantum field theory in 
a series of articles,l-4 which finally led to the proof of its 
ultraviolet stability for all a2 in the interval [0,817'[, i.e., for 
the whole range of a 2 for which the model is superrenormali­
zable as a field theory. 1 (For a 2 E [0,417'[, only Wick order­
ing is required in order to have a finite theory.) The proof in 
Ref. 1 was based on renormalization group methods and on 
an extensive use of the tree formalism, both introduced in 
Refs. 5 and 6. The difficult problem to solve, however, was 
the treatment of the large fluctuations of the random fields 
arising in the Euclidean formalism. The solution given in 
Ref. 1 exploited certain negativity properties of these large 
fluctuation parts in a more systematic way than was done in 
previous work (cf. Refs. 2 and 3). Here we give a second 
proof of ultraviolet stability in the interval [417',817'[, for 
which probability estimates of the large fluctuations play the 
more important role. This second solution generalizes the 
methods used for values [417',3f7r[ in Ref. 2 [we only prove 
the upper bound of ultraviolet stability (cf. Ref. 3) since for 
the proof of the lower bound the large fluctuating fields pres­
ent no problem]. Contrary to the first approach to the prob­
lem of stability for a2;>417' in Ref. 3 the solution given in Ref. 
1 as well as the one presented here also rely on an iterative 
procedure for treating the large fluctuation parts of the fields 
in the spirit of the renormalization group. Since the formal­
ism and the notation used are explained in complete detail in 
Ref. 1 we will restrict ourselves here to a brief summary. 
Furthermore, we will make extensive use of the estimates of 

aJ Presently at Dipartimento di Matent8tica, I UniversiUi degli Studi di 
Roma "La Sapienza," Piazzale Aldo Moro 5, 1-00185 Roma, Italy. 

the effective potentials associated to different scales derived 
in Ref. 1. 

B. The PaulI-Villar regularization, the renormallzed 
Interaction, and the ultraviolet stability of the sine­
Gordon theory 

Let the multiscale decomposition 

(1.1) 

denote a regularized free field with ultraviolet cutoff r - N, 

where r> 1 is a scaling parameter chosen close to 1 and the 
covariances ofthe regular fields 9' t) on scale h are given by a 
Pauli-Villar regularization of first order: 

C(h)(s-1J):=C~~):= f dpeip(s-fJ) 

x( 1 _ 1 ) 
p2+yh p2+fh+2' 

The "bare cosine interaction with cutoff N" 

V~N)[A]: = Vo( 9' «N» [A] 

( 1.2) 

: = ~ { I :eiaucp(<.NJs:ds (1.3) 
2JA u=±1 

is superrenormalizable for all values a 2 E [417',817'[, where 
the field theory is meaningful and has a Yukawa gas inter­
pretation in statistical mechanics. I

-
3 (Note that the Wick 

ordering is defined by: e f :=e - (\/2H~' (/') e .t: ) 
Let 1/ h ( .) denote the expectation with respect to the 

Gaussian measure P(d9'(h) ) given by the covariance C ~~) in 
(1.2). For n random variablesil, ... ,in we define the "trun­
cated expectation" or "cumulant" of order n with respect to 
a Gaussian measure as follows: 
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~T(fl,···,fn ) 

an I . - -a-r-
I 

-••• -a-r-
n 

log ~ (eT'f. + ... + Tn!n) T, = ... =T" =0' 

(1.4 ) 

Further, we write ~T(/;n) whenft = ... =/" =/ Note 
that the cumulants are multilinear and ~T(.;1) = ~(.). 
Finally, we write ~ (o;;k) for the product ~ 0 ••• ~ k; i.e., the 
expectation with respect to the product measure ('rI kEN) : 

k 

P(dtp (d» = IT P(dtp (h». 

h=O 
( 1.5) 

Using this notation we introduce the "renormalized cosine 
interaction up to order t" for any even integer t satisfying 
t>to such that for to EN, to> 1, and 

a 2 E [81T(1-1/to),817'(1-1/(lo + 2»)[, (1.6) 

V(N) [A]: = V( tp (o;;N»)[A] 

: = Vo( tp (O;;N» [A] 

-± 1.. ~fo;;N) (VbN) [A];n). (1.7) 
n= 1 n! 

The counterterms (Le., the cumulants) are constants that 
may be infinite as the cutoff is removed (i.e., N-oo); note, 
however, that odd-order counterterms remain finite by the 
nature of the bounds of the effective potential on the scale k 
(cf. Ref. 1, Theorem 2.1). The V<N) [A] is called "stable in 
the ultraviolet limit" if there exist two positive constants 
E _ (A.) and E + (A.) independent of the cutoff N and of the 
finite volume A so that 

e-E_(A)IAI<:; f eV<NJ[A1P(dtp (0;;N» <:;e +E+(A)IAI. (1.8) 

Moreover, we will show that in our case the constants 
E ± (A.) satisfy the following property: 

limE± (A.)A. -(t+T) =0, 
A....o 

for some 1" > O. 

C. The effective potential 

( 1.9) 

It will be convenient to study the effective interaction on 
the scale k defined recursively for k = O, ... ,N - 1, 

V(k) [A]: = V(k)( tp (o;;k»)[A]: = log ~ k+ I (e v<k+1)[A]), 

( 1.10) 

as we perform the successive functional integrations with 
respect to the measures p(dtp(h) ) for h = N,N - 1, ... ,k + 1. 
By expanding the right-hand side of (1.10) into a formal 
Taylor series one gets 

V(k)[A] = f ~~r+I(V(k+I)[A];n). 
n=O n. 

( 1.11) 

By iterating this procedure for the effective potential in the 
arguments of the rhs of (1.11), the Gallavotti-Nicolo tree 
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expansion may be derived. 5,6 Generally we will be interested 
only in the contributions to V(k) [A] up to a certain order tin 
A.; that is we study the "truncated effective potential" on the 
scale k: 

(1.12) 

where [.] o;;t means that we drop orders in A. higher than t. 

II. THE PREREQUISITES TO THE PROOF 

A. The recursive procedure 

The recursive procedure that we are going to construct 
will make use of the fact that the integration with respect to 
the measure P( dtp (o;;N) ) can be factorized into a sequence of 
integrations with respect to the measures P(dtp (k» 
(k = O, ... ,N) due to the multiscale decomposition of the 
field. In fact, we will have to study explicitly only a single one 
of these integrations due to the scale invariance 

tpt)=tp~; ('rIhEN) (2.1) 

of the regular Gaussian fields tp th
). Proceeding heuristically 

for now, let us restrict ourselves to "smooth fields," i.e., 
fields in the set (0 < E < 1, to be chosen later): 

{tp (k)llsin(aI2)( tp (k) _ tp (k»)1 S 7f 

<Bdr"lt-7]I)I-E, 'rIt,7]EA}, (2.2) 

whose characteristic function we call XBk given the increas­
ing succession5 {B k } 

(2.3) 

with 17>2 and B > 1 arbitrarily fixed. 
After having integrated exp(V(N) [A]) with respect to 

these smooth fields from scale N down to scale k, we can 

expect to find XBk exp (V (k) [A] ) mUltiplied by a remainder 
of higher order, i.e., an expression like 

XBk exp{V(k) [A] + A. t+ IR (t,A., tp (d»}, 

where R (t,A., tp( o;;k) ) is a remainder, which, of course, de­
pends on A., on the truncation order t, and on the fields with 
respect to which we have not integrated yet. That these inte­
grations can indeed be performed with R (t,A., tp( o;;k) ) a re­
mainder of controllable size, is guaranteed by the so-called 
"Main Lemma," which we will state in complete detail in 
Sec. II B. The necessary prerequisite for applying the Main 
Lemma to the integration with respect to the Gaussian mea­
sure P(dtp (k» are good estimates on the smooth part of the 
effective potential j1<k) [A]. Such estimates have, in fact, 
been derived in Ref. 1. The recursive procedure comes to an 
end at some finite frequency ko for which it will be an easy 
task to prove inequality (1.8), provided the recursive proce­
dure has produced sufficiently strong estimates on the 
smooth part of the effective potential and on the remainder 
at the finite frequency ko' 

The iterative procedure we have described thus far only 
applies to the smooth part of the effective potential (Le., the 
part depending on the smooth fields), because the estimates 
of the effective potential that we have mentioned are only 
valid for this part. In principle, there are two ways oftreating 
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the large fluctuation contributions to the effective potential 
in the proof of the upper bound of ultraviolet stability: either 
they can be neglected because they are negative or they have 
to be considered as additional contributions to the re­
mainders R (t,A, q;( <.k) ). In the proof given in Ref. 1 as well 
as in the one presented here, both of these treatments are 
used, although the emphasis in Ref. 1 is on negativity proper­
ties whereas here it is on careful probability estimates of the 
large fluctuation contributions. 

It turns out that it is not possible to cope with the prob­
lem of large fluctuations considering only a single scale. In 
fact, just as the smooth part of V<k,,) [A] has to be consid­
ered-in agreement with the philosophy of the renormaliza­
tion group-as produced by contributions coming from dif­
ferent scales k (ko<k<N), which are to be treated step by 
step, also the large fluctuation part of V(k,,) [A] has to be 
accurately decomposed into components originating on dif­
ferent scales. Having recognized this general fact it is of sec­
ondary importance whether the decomposition of the large 
fluctuation part is done to exhibit further negativity proper­
ties (cf. the proof in Ref. 1) or to distribute estimates of the 
large fluctuations over the remainders appearing at different 
scales. In this paper we will, in fact, follow the latter strategy. 

Before doing so, however, we should make more precise 
the notions "smooth" and "large fluctuation part" of the 
effective potential at frequency k, but without rewriting here 
the complicated definitions given in Ref. 1. Thus, we only 
briefly present the main ingredients of the iterative mecha­
nism used, referring the reader to Ref. 1 for their precise 
definitions (cf. Sec. 2 of Ref. 1). The different parts of the 
effective potential at frequency k we have to consider are 
distinguished according to the regions in R2t over which 
they are integrated (in the same sense as V6N) [A] is inte­
grated over A C R2

). These regions of integration in tum are 
characterized by the behavior of the fields q; (k), q; (<.k>, and 
q; (<.k-I). Let us, for now heuristically, indicate the regions 
of integration in which the field q;(k) has large fluctuations 
by f!lt k and those in which the fields q; (<.k) or q; (<.k - I) have 
large fluctuations by ~ k (resp. ~ k _ 1 ) (and their comple­
ments by f!lt~ ,~~ ,~~ _ 1 ). The precise definitions are given 
in Sec. III A. Due to the relationship between large fluctu­
ations of different frequencies (a large fluctuation of q; (<.k) is 
either caused by a large fluctuation of q;(k) or of q; (d-I) 

we have the following inclusion (cf. Lemma 3.1; the regions 
considered here are, however, more complicated than those 
of Lemma 3.1, nevertheless a similar inclusion holds, as is 
shown in Sec. 2 of Ref. 2): 

(2.4) 

This relationship is used to simplify the integration of the 
smooth part ofthe effective potential V(k) [A] with respect 
to P(dq;(k». Although it would be natural to consider 
V(k) [~~] as the smooth part ofV<k) [A], the dependence 
on the field q; (<.k) introduced by the region of integration 
~~ of V(k) [~~] is very hard to control. Therefore, one 
uses (2.4), which allows one to consider V(k) [~L 1 nf!/t~] 
as a smooth part ofV(k)[A], where now, however, the de­
pendence on q;(k) introduced by f!lt~ turns out to be man-
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ageable. When integrating this expression with respect to 
p(dq;(k) ) by using the Main Lemma one obtains an expres­
sion of the following type [cf. (1.11)]: 

[± ~~rcV(k)[~Ld;n)] 
n= 1 n. <.t 

+ controllable remainder. 

From the above it is clear that we can construct an iterative 
procedure for the proof of the upper bound of ultraviolet 
stability if the following steps can be performed (the integra­
tion of V<N) [A] with respect to P(dq;(N) ) is trivial): 

(1) 

(2) 

(3) 

V(N- I) [A]----+V(N-I) [~~_ I]' 

V(k) [~~ ]----+V(k) [~L 1 nf!/t~] 

V(k) [~C nf!/tC] k-I k 

(4) Ltl ~! ~r(V(k)[~Ld;n) Lt 
----+V(k-I) [~L I]' 

It is not difficult to show that steps (1) and (2) are indeed 
allowed, since 

(a) 

(b) 

V(N-I)[~ ]/0 N-I .... , 

V(k)[~Cn~ nf!/tC]/O k k-I k .... ' 

(c) V (k) [~~nf!/t k ] gives rise to a controllable remainder. 

Here, (a) and (b) are negativity properties oflarge fluctu­
ation parts of the effective potential, together with (c) they 
have been shown in Ref. 1 (cf. also Ref. 3). 

Step (3) can be performed using the Main Lemma. Step 
( 4) is the fundamental difficulty of the proof that was first 
encountered in Ref. 3. It is here that it becomes clear that the 
large fluctuation problem cannot be solved without taking 
into account more systematically the relationship of large 
fluctuations of different scales. What one has to do, in fact, is 
to create a transport mechanism for the large fluctuation 
part of the effective potential, which is the equivalent of the 
transport of its smooth part by the Main Lemma. 

In Sec. III we will show how the difference 

_ V(k-I) [~C ] 
k-I (2.5) 

can be decomposed into components coming from different 
scales. But before doing so let us state the Main Lemma. 

B. The Main Lemma 

Consider a function H(J) of the fields q; (k) at fixed 
fields q; (<.k-I) given an arbitrary set JCA lE = (Pl, ... ,Pm ), 
!I.,en analogously; Pi,qi ,mi ;;;.0] 
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± ± L IA h ih dSI ... dSh Veqln (S;.···'Sh) .ft (COS!!.... cp t;;k»)PJ 
n = 1 m = 1 Pi J J = 1 2 

oor;;;l:i= 1 qj <m 

m [( )P' m (Sin(aI2)(m(';;k)_m(';;k»)mJ]l 
X II . a (.;;k) J "" T Sj T Sf sm-cp S, ~ , 

j=1 2 J /=1 (r"ISj-s/I)I-.-
/#j 

(2.6) 

where ° < E < ~ and r> 1 are arbitrarily fixed parameters of 
Holder continuity and scaling. 

Assuming Qk to be an exact pavement of A, i.e., 
Ub.eQka = A, where the a are squares of side length r- k. 

Let d(al, ... ,a,,) be the length ofthe shortest path connect­
ing al,. .. ,a". The kernels Veqln of H[J] are supposed to sa­
tisfy bounds of the following type: 

< (const)e - "yi'd(b., ..... b..) B iA:W (k) 

'H- - ~d(b., ..... b..) 
.... k e , (2.7) 

whereAew(k) is the effective coupling constant defined by 

(2.8) 

B k is the increasing succession given by (2.3), and (for large 
k on small A) Hk may be chosen independent of n as 
HAeIf(k)Bi; Hand K are positive constants. 

We further define the p(dcp(k) )-measurable events 

E!: = cp (k)1 sup S 71 { [ 
Icp (k) - cp (k)1 ] 

s.71 e b. (r(k)ls -111)1-.-

<B (1 + r(k)d(a,J»} , 

whose characteristic functions we call rl. Defining 

rl:=I-rl 
and for arbitrary G C J 

rl: = II rl, 
b.eG 

we have the following decomposition of the identity: 

(2.9) 

(2.10) 

(2.11 ) 

(2.12) 

Using these definitions the Main Lemma can be stated as 
follows. 

Lemma 2.1 (Main Lemma): For every integer t>O there 
exist constants B • ,D, g, g' depending only on E, r, t, and K so 
that for B>B· 
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f rl X~\G~[J\'G]( 'I'(k»P(dcp (k» 

<exp {8(BJik )yk IJ 1 + 8' (BJik )yk IGrJ I} 

xexp Ltl ~! IfnH[J)( cp(k»;p)L, 

X (f X~P(dcp (k» )112, (2.13) 

where 

8(B,Hk ): = D{(HkBg/iikBg), + 1 + e -g'B' + gii~g}, 

8'(B,Hk ): =D{HkBg}. (2.14) 

Further, we have an estimate on the probability that the 
event E! does not occur, i.e., the probability of a large fluc­
tuation: For all E> ° there exist positive constants B ',a,b so 
that for B > B ' 

fX~P(dCP (k».;;;; II e2a - 2bB'(1 + d(Il..J)), 

ll.eG 
(2.15 ) 

for any G C Qk' This statement is also called the "Tail 
Lemma." The Main Lemma and Tail Lemma have been 
proven in Ref. 7 and adapted to the sine-Gordon problem in 
Refs. 2 and 3. 

C. The Main Theorem and the result 

Let us study the difference a (k) [g k] [see (2.5)] more 
closely. We can imagine that the rough fields cp (.;;k) are the 
result of the rough fields cp (j) on scales j = 0, .. . ,k (Lemma 
3.2, see Sec. III A) and that therefore the difference 
a (k) [ g k] can be bounded by a sum of contributions 
F j/, (A,t) coming from the rough fields cp (j) for j = O, ... ,k. 
That is, let us assume we have a bound of the following type 
(see Sec. III B), whereF P) is the cp (j)-dependent contribu­
tion coming from scale k: 

k 

a(k) [g d.;;;; 2: FF)(A,t). (2.16) 
j=O 

Furthermore, let us assume that we have integrated with 
respect to P(dcp (h» for h = N, ... ,k + 1 and that at each fre­
quency we have been able to bound by a factor exp c(A,h) 
anything dependent on the cp(h) fields but not integrable by 
the Main Lemma. This would mean that before integrating 
with respect to p(dcp(k) ) we would actually have the expres­
sion 

k N-2 

V(k)[gk] + 2: 2: (Fhj)(A,t) +c(A,h + 1)) (2.17) 
j=O h=k 
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in the exponent. Now the F ~k), h = k, ... ,N - 2 are going to 
be the ones that are qJ(k) dependent and will have to be esti­
mated by an exp c(A,k) factor. Note that ~f';:OI Fjj~ I (A,t) 
is set to zero since we know, e.g., by Ref. 1, Theorem 2.3 (this 
property was first proved in Ref. 3), that 

V(N-I) [g N- d 0;;;0, (2.18) 

allowing us to apply the Main Lemma for the p(dqJ(N - I) ) 

integration immediately, taking care of the first steps in our 
recursive procedure. Hence we propose to prove the follow­
ing theorem. 

Theorem 2.1 ("Main Theorem"): For any given 
a 2 E (41r,81T[' A>O, and r;;.to(a2

), here exist constants 
c(A,k), for k = O, ... ,N - 2, such that 

f exp (V(k) [gn + jto :t: Fh
j
) (A,t) ) P(dqJ (k» 

o;;;exp c(A,k) IAI 

Xexp (V(k-I) [gL I] 

+ :t~ h: ~ ~ 1 F U2 1 (A,t) ) , 
(2.19) 

where for k = 0 it is understood that the second exponent on 
the rhs of (2.19) is missing. 

The upper bound of ultraviolet stability is shown if the 
constants c(A,h) are summable in h, that is 

N-2 
C + (A): = lim L c(A,h) < 00. 

N~"" h=O 

(2.20) 

Furthermore, it will be clear from the proof of Theorem 2.1 
that 

limc+(A)A-t+r=O (1">0). 
A~ 

(2.21 ) 

This proves the existence of the finite, positive constant 
E + (A) independent of the volume I A I and the cutoff N such 
that for all a 2 E [41T,81T[, we have 

f eV(N)[AJp(dqJ «N»o;;;eE+(A)IAI, (2.22) 

where V (N) [A] is the renormalized interaction defined in 
(1. 7) with E+ (A) satisfying property (1.9). 

III. THE PROOF OF THE MAIN THEOREM 

A. Regions of large fluctuations and their properties 

The heart of the proof will be to show that the large 
fluctuation contributions of the effective potentials (Le., the 
parts integrated over regions of large fluctuations) give rise 
to a controllable remainder as the cutoff N is removed. The 
building blocks of the regions oflarge fluctuations, which we 
have already mentioned in Sec. II B, are the following two 
types of sets defined for all k = O, ... ,N and a fixed €, 

0< €< 1 - a 2/81T for a given a 2 E [41r,81T[: 

1863 

D (k): = D (k)(B
k

): = D (k)( qJ «k» 

. _ {(S,1i> E A211sin2 (a/2)( qJ ~<k) _ qJ ~<k»))1 

>Bk ( 1"'IS-1/I)I-e} 

(3.1) 
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and 
R (k): = R (k)(Bk ): = R (k)( qJ (k» 

. _ {a E Qk 13SE a,1/ E A such that 

1'" Is - 1/1 < 1 and 

Isin(a/2)( qJ ~k) _ qJ ~k»))1 

> (Bk/a)( 1'" 15' -1/1) 1 - e 

X(l + 1"'d(a,A»)}, (3.2) 

where Bk is the strictly increasing succession defined as in 
(2.3) and a> 1 is a constant subsequently to be chosen suffi­
ciently large. (Qk is here a pavement of ]R2 consisting of 
tesserae with linear size y - k .) 

We prove the following lemma. 
Lemma 3.1: For all k = O, ... ,N, we have 

D (k) r;;"D (k - \)u(R (k) XR (k», (3.3) 

(D (k)nD (k-I»)\ (R (k) XR (k» r;;"D (k- I)(B k-I)' (3.4) 

with 

Bk_I:=yl-2eBk_I' (3.5) 

for a fixed a depending only on y> I, a 2 < 81T, and A > O. 
Proof: For (3.3) we show the converse, namely for 

(5',1/)W(k-1) u(R (k) XR (k» follows (5',1/)W(k): 

(5',1/)W (k- \) 

¢:?lsin(a/2)( qJ~<k-l) _qJ~<k-\)1 

o;;;Bk _ l ( 1"'- I I5'-1/I)I-e 

(3.6) 

[and (s,1/) E A2, otherwise the conclusion is obvious] 

::::::> eitherlsin(a/2) (qJ ~k) _ qJ ~k»)1 

0;;; (BJa)( y(k) 15' -1/1) 1- e 

or1"'I5'-1/I>I::::::>Bk (1"'IS-1/I>I-e>1. (3.7) 

The latter immediately implies (s,1/) E£ D(k) while for the 
former we apply to the triangular inequality 

Isin(a/2)( qJ ~<k-I) _ qJ ~<k-I)I 

+ Isin(a/2)( qJ ~k) _ qJ ~k» I 

>lsin(a/2)( qJ~<k) _qJ~<k»1 (3.8) 

and thus 

B B 
k - 1 B k ( 1'" Is - 1/ I> 1- e + _k (1'" Is - 1/ I) I - e 

Bk yl-e a 

>lsin(a/2)( qJ~<k) _qJ~<k»I, (3.9) 

which implies (S,1/)W(k) as well since we can pick a finite 
al(OI) large enough so that for any 01, with 
y-O-e) <0

1
<1, 

Bk_I/Bk yl-e + l/ao;;;;OI' 

for all k = O, ... ,N and all a> a l (01), (3.10) 

Inclusion (3.4) is proved using the triangular inequality 
(3.8) in the other direction and noting that for 
(s,1/)e (D(k) nD(k-1) )\ (R (k) XR (k»: 

J. Renn and A. Steinmann 1863 



                                                                                                                                    

(S,TJ) ED (k) 

<:}lsin(a/2)( 1/1 }<k) -1/1 ~<k» I 

>Bk ( yk/S-TJI)I-e, 

(S,TJ)f!R (k)XR (k) 

=>lsin(a/2)( 1/1 tk
) -1/1 ~» I 

<. (Bk/O')( yk Is - TJI) I-e. 

Thus we have 

Isin(a/2)( 1/1 }<k- I) -1/1 ~<k - I» I 

B 
>Bk(ykIS-TJI)I-E- _k (ykIS-TJI)I-E 

0' 

provided we pick a finite 

(3.11 ) 

(3.12) 

(3.13) 

(3.14) 

so that (1 - 1/0') >y- e. Picking a 0' greater than 
max{O'I (01 ),0'2 (E")} completes the proof. 

Figure 1 illustrates the statement of Lemma 3.1. • 
Lemma 3.2: Define B(k,h): = yO - 2e)(k - h) Bk _ h for 

all k>h>O. Then we have the following inclusion for all 
k=O, ... ,N: 

k 

D (k)( rp «k» ~ u R (h)(B(k,h); 1/1 (h»)2. 
h=O 

(3.15 ) 

Proof' By applying (3.3) of Lemma 3.1 onto the disjoint 
union 

D (k) = (D (k)"D (k-I»u(D (k) AD (k-I» 

~ (R (k) XR (k»U[ (D (k)nD (k- I»" (R (k) XR (k»] 

(3.16) 

and then iterating using (3.4) upon the square brackets in 
therhsof(3.16) we get 

D (k)(Bk ) ~R (k)(Bk )2uD (k-l)(B k-I) 

~R (k)(Bk )2uR (k-l)(B k_I)2 

uD (k-2)(B 1:-2)' ( 3.17) 

~-----+---+------1L. - D(k) (Bk ) 

A 

which terminates after k + 1 steps since D (- 1)::::0. Intro­
ducing the new notation for the B primes proves the asser­
~a • 

B. An upper bound for 11 (Ir) [ f/P k ] 

For Theorem 2.2 in Ref. 1 we know that the terms of 
order n>2 and A for l1(k) [~k] may be estimated propor­
tional to 

ykA;tr(k) r dSdTJsin2!!...(I/1«k)-I/1«k». (3.18) 
JD(~ 2' ~ 

Estimating the integrand by 1 and applying the decomposi­
tion (3.15) of Lemma 3.2 for D(k) we have the following 
estimate (A a positive constant): 

t k 

11 (k) [~k ] <. L L AA:tr (k)yk IR 2(k,j) I 
n=3j=O 

k 

=: L F}/)(A,t) 
j=O 

where 

IR 2(k,j) I: = r ds dTJ, 
J(R (j)(B(k,j); OP (})II' 

(3.20) 

depending on the field 1/1 (j). Note that second-order terms 
are missing in (3.19) since they are negative (Theorem 2.3 in 
Ref. O. 

C. The proof completed 

Let rl(h,k) be the characteristic function of E !(h,k) [de­
fined as in (2.9)], where (h>k> 0): 

B(h,k): = (1/O')B(h,k) = (1/0')yO-2E)(h-k)Bh_ k, 

(3.21 ) 

as in Lemma 3.2. Let Gk ;;),Gk + I;;), ... ;;),GN ;;),GN + I: = 0 
be a chain of arbitrary sets of squares in the pavement Qk of 
H2. Writing 

.)j(h,k) . - II .~(h,k) 
X G., G. + 1 • - X a (3.22) 

aE G.,G.+ 1 

and X analogously as in (2.11), and observing that 

FIG. L The sets oflarge fluctuations. 
R (k) I J....----,"""'-.IE 

-D(k-!)(B ) 
k-! 

ait'.Jl/":t-+----+--_ D (k-!) (B' ) 
k-! 

'. ""'" - (D (k)n D (k-!» (R (k\ R (k» 
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N 

Gk= U (Gh\.Gh+I ), 
h=k 

we can immediately write the following decomposition of 
the identity: 

1 = ~ .)i(k,k) .°)i(k,k) ... :)i(h,k) ••. :)i(N,k) (3.23) 
- ...:::.,XQk'\GkXG',Gk + 1 X Gh,\Gh + I XGN ' 

o 
where the sum runs over all possible chains G in Q", . 

Calling I the Ihs of (2.19), which is the integral we want 
to estimate in the Main Theorem, we use this decomposition 
of the identity and obtain 

I: = J exp (V(k) [..@'k] + jto :t: Fk
j
) (A,t) ) P(dtp (k» 

= ~ J exp(V(k) [..@'k] rl~~~~) 
G 

(3.24) 

The crucial observation now is that the sets R 2(h,k) them­
selves build a chain since for all h > h '> k, Ii (h ' ,k ) <.Ii (h ,k ) 
and thus 

R 2(h,k);;JR 2(k + l,k);;J '" ;;JR 2(h ',k) 

;;J .• , ;;JR 2(h,k);;J ... ;;JR 2(N,k). (3.25 ) 

Defining R 2(N + l,k): = 0 for all k, we can write the fol­
lowing identity for all h;;,k: 

N 

R 2(h,k) = u (R 2 (I,k}\.R 2(1 + l,k»), (3.26) 
l=h 

whence it is clear that for a given ytp (k) there is some chain G 
with 

(3.27) 

The contribution to IR 2(h,k)1 in Fkk)(A,t) [see (3.19)] 
comes from a sum 1:;'= h IR 2 (l,k) \.R 2(1 + l,k) I, which will 
be the same for the chain G: 1:;'= h I G1 \. G1 + I I, now field in­
dependent. Taking this into account we can bound the last 
tp (k)-dependent term in the double sum ofthe rhs of (3.24) 
as follows: 

k N-2 k-IN-2 N-2 N t 

L L Fhj)(A,t)<. L L Fh j) (A,t) + L L AfhIR2(1,k}\.R2(1+ l,k)1 L A:ff(h) 
j=Oh=k j=Oh=k h=kl=h n=3 

k-IN-2 N h t 

<. L L Fhj)(A,t) + L L L A'A :ff(l)f1IGh \.Gh+ II, 
j=O h=k h=kl=kn=3 

(3.28) 

where we have exchanged the double sum 1:~:; f'l:;'= h (h,l) by 1::= k 1:~ = k (h-q, l_p) (setting to zero some ofthe terms in 
the latter sum) and then renamed p and q back to k and I. The I-dependent part in (3.28) is proportional to 

(a'141T- 2)nl+ 21 _ • .2nl(a'/81T- (I-lin» {> 1, for n<.to(a
3

), 
y -r 2 < 1, for n > toea ), 

(3.29) 

since to(a 2
) had been chosen as such (see Sec. I B). Thus, for n > to the sum over! in (3.28) is proportional to the first term 

while for n<to we bound the sumoverlby the largest (last) term of the sum times (h - k + 1), that is, the number of terms in 
this sum. Therefore, we get 

k N-2 k-IN-2 
L L Fkj)(A,t)<. L L FP)(A,t) 

j=O h=k j=O h=k 

+ htk [nt3 Ao(h - k + 1)A ~ (h)y2h IGh \.Gh + II + n=t+ I AIA:ff (k)fk IGh \.Gh + II] . 

Using the Main Lemma to estimate I with (3.30) introduced into (3.24), we have 

I <.exp(8(Bk,Aeff (k»fk IAI )exp(V(k - 1) [..@'k- I] + A (k- 1) [..@' k _ 1 P 

(3.30) 

X ~ {eXP(AAeff (k)Bi+gfk IGknAl + (3.30») [J P(dtp(k»rl~~~~+1 ... X1':'k)f/2}. (3.31) 
G 

We are now left to show that 1:0 {"'} is summable in k, that is, that it can be incorporated into the remainder. Note that 
A (k - 1) [ ..@' k _ I ], contributes a new 1:;:; olF ,V~ I (A,t), which combines with the first term on the rhs of (3.30) reproducing the 
expression we had on scale kbut now for scale k - 1. Applying a "refined version" of the Tail Lemma (see Sec. II B and Ref. 
2) we obtain 

N 

[ ... ] 1/2<. II II exp(a - bIi2(h,k»)(1 + fkd(A,A») 
h = k <1 E Gh'\ G. + I 

Noting that 

eIG.,\Gh+11 = II el<11 (IAI = y-2k), 
<1 E G.,\G.+ I 

(3.32) 

we pull down the sums over h in (3.30) and write them as the product of the exponentials in 1:0 and obtain for this sum in 
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(3.31) the following (g' > g, other constants chosen appropriately): 

t Jt4EG!J.Gh+1 {exp [a +AAetr(k)B~+g' + nt3 AbhA:tr(h)y(h-k) 

+ n=t+ 1 A ;A:tr(k) - blF(h,k)(1 + Ykd(a,A»)]}. (3.33 ) 

Estimating this as a product of squares, 

II {1+ f exp[a+AAetr(k)B~+g·+ ± A;A:tr(k) 
6E~ h=k h=~+l 

+ nt3 A bhA d (h)y(h-k) - blj2(h,k)(1 + ykd(a,A»)]} , (3.34 ) 

we note that the sum over n from 3 to to is the only dangerous 
term; however, for h sufficiently large, the negative term 
overrides since the ratio 

hy(a'/41/" - 2)nhy (h - k) 

y(1 - 2E)(h - k) B ~ _ k 

crhy(a'/41/"- 2)nhy (h - k) 

> (const/h)th ((1 - a'/81/")(n/2) - EI, (3.35) 

and the last expression can be made to be greater than 1 for 
any n>3 by choosing E<1 - a 2/81T and requiring h to be 
sufficiently large, i.e., greater than some frequency ko. The 
effective potential at this frequency ko will not give rise to 
ultraviolet problems anymore since now only a finite num­
ber of integrations has to be performed. Nevertheless, as A 
goes to zero, we can choose ko to be 1 as well. The product 
(3.34) thus can be estimated by 

exp(c exp( - bB 2)yk IAI), (3.36) 

with c and b appropriately chosen. By adjusting D in the 
definition of 8 (see Sec. II B) we note that (3.36) has the 
form 

exp(8yk IAI), 
which completes the proof. • 

Note added in proof: The techniques presented in this 
paper also can be used in order to prove the asymptoticity of 
the Mayer series for the pressure in the corresponding Cou­
lomb gas problem [cf. Refs. 8 and 9]. We are grateful for the 
possibility we have had to thoroughly discuss this extension 
of our results with Francesco Nicolo during a stay at the 
I.H.E.S. in Bures-sur-Yvette, France. 
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Two-loop counterterms for the Wess-Zumino model on anti-de Sitter space 
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The two-loop counterterms for the Wess-Zumino model on a four-dimensional anti-de Sitter 
space background are computed. It is shown that, as at the one-loop level, the counterterms 
preserve supersymmetry but the nonrenormalization theorem is violated by the addition of a 
divergent linear term to the superpotential. 

I. INTRODUCTION 

Recently the subject of supersymmetric field theories 
defined on a curved anti-de Sitter (AdS) space background 
has proved an interesting and fruitful field of investiga­
tion. I- 1O Motivation is provided by the appearance of AdS 
space in the maximally supersymmetric classical solutions of 
supergravity theories. II Moreover, when quantized, super­
symmetric field theories on AdS space have been shown to 
evince properties strikingly different to their flat-space coun­
terparts. The purpose of the present work is to explore 
further the most noteworthy deviation from flat-space be­
havior so far discovered; namely the failure of the nonrenor­
malization theorem for the Wess-Zumino model on a four­
dimensional AdS background.9 

First, however, let us summarize the previous develop­
ment of the subject, concentrating on four-dimensional anti­
de Sitter space (AdS)4' 

Burgess5 calculated the vacuum energy to one-loop or­
der for a general field theory on an (AdS) 4 background, 
demonstrating the preservation of supersymmetry to one­
loop order and obtaining the one-loop corrections to the ra­
dius of the (AdS) 4 space. Burges et al.7 discussed the Wess­
Zumino model on an (AdS)4 background and showed how 
to obtain conserved generators for the isometry group 
O( 3,2), having a manifestly positive energy density and van­
ishing expectation value in a supersymmetric vacuum. 

Two groups of authors8
-

lo have calculated the one-par­
ticle-irreducible one- and two-point functions to one-loop 
order for the Wess-Zumino model on (AdS)4' The normal 
coordinate momentum space expansion for propagators in 
curved space-time, developed by Bunch and Parker, 12 

played an important role in these computations. Diisedau 
and Freedman,9 using a manifestly supersymmetric Pauli­
Villars regularization scheme, found that the auxiliary field 
had a vanishing vacuum expectation value, consistent with 
the preservation of supersymmetry to this order. However, 
they found the scalar field to acquire a divergent vacuum 
expectation value and concluded that the nonrenormaliza­
tion theorem, 13 which states that the classical superpotential 
is not renormalized by quantum corrections, is violated by 
the Wess-Zumino model on the (AdS)4 background. 

In addition to using the Pauli-Villars scheme, Bellucci 
and Gonzalez8 proposed as a candidate for a supersymme­
tric regularization scheme on the (AdS) 4 background a var­
iant of dimensional regularization in which the curvature 

tensor is assumed to have strictly four-dimensional indices 
while all other quantities are analytically continued away 
from four dimensions. 

In the present paper we shall extend the results of Diise­
dau and Freedman9 to the two-loop level. If we restrict our­
selves to the consideration of divergences, it proves possible 
to apply the modified dimensional regularization scheme 
suggested by Bellucci and Gonzalez8 even at two loops. We 
use the background field method I4.15

; in this context the di­
vergences of the one-loop effective action may be efficiently 
evaluated using the well-known Schwinger-DeWitt kernel 
techniques, confirming the results of Diisedau and Freed­
man.9 The two-loop effective action is written as the sum of 
vacuum graphs in the presence of background scalar, auxil­
iary, and fermion fields. The background-dependent propa­
gators may be expressed in terms of Green's functions for 
second-order differential operators. Such Green's functions 
may be expanded as a series in which singular, purely space­
time-dependent quantities multiply coefficients derived 
from the standard asymptotic expansion of the Schwinger­
DeWitt kernel for the operator in question. 16 Ultraviolet di­
vergences arise from the products of these singular func­
tions, which occur when the expansion for the Green's func­
tion is inserted into the expression for a Feynman graph. All 
potentially divergent products of these singular functions, 
together with the resulting divergences, have been tabulated 
elsewhere. 16 It is therefore relatively straightforward to cal­
culate the two-loop counterterms for the Wess-Zumino 
model on the (AdS) 4 background in a systematic fashion. 
We find that they take a precisely similar form to the one­
loop counterterms. To be specific, we find a term of the same 
form as the original kinetic part of the Lagrangian together 
with terms that correspond to adding a divergent term, lin­
ear in the scalar field, to the superpotential in the interaction 
Lagrangian. We deduce that at the two-loop level supersym­
metry is preserved by the divergent counterterms, but the 
nonrenormalization theorem fails, exactly as at one loop. 

The paper is organized as follows: In Sec. II we define 
the Wess-Zumino model on (AdS)4' We introduce the 
Schwinger-DeWitt kernel, use it to compute the one-loop 
counterterms, and discuss the consequences. In Sec. III we 
recapitulate the general procedure for computing two-loop 
divergences using the Schwinger-DeWitt kernel and use it to 
evaluate the two-loop counterterms for our model. In Sec. 
IV we summarize our results and offer some concluding re­
marks. 
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II. ONE-LOOP CALCULATION 

Anti-de Sitter space in four dimensions (AdS) 4 is the 
hyperboloid71AB ytyB = a-2embeddedinR 5 with Cartesian 
coordinates yt and flat metric 71 AB = ( + , - , - , - , + ). 
Full details of the geometry are given elsewherel7,18; from 
our point of view the important result is the expression for 
the curvature tensor 

(2.1) 

We also assume the existence of a set of vierbein fields ea I' ' 
where the index a refers to a local Minkowski frame. We 
have, for eal' and its inverse eal', 

(2.2) 

and we introduce flat y-matrices y" in the local frame, satis­
fying 

{y",y"} = 271ab
, {Ys,y"} = 0, yl = 1 . (2.3) 

We define y-matrices Yl' in an arbitrary frame by 

Yl' = eal'Ya . (2.4) 

Although we shall use dimensional regularization19 so that 
all quantities are regarded as extended to d dimensions (with 
d = 4 - E) we shall adopt the suggestion of Bellucci and 
Gonzalez8 and consider the indices of Rl'va/3 in (2.1) as 
strictly four-dimensional, so that we still have the exact rela­
tions 

Rl'v = - 3a2gl'v' R = - 12a2. (2.5) 

Moreover we shall assume (2.3) to remain valid for d #4. 
There appear to be no contradictions provided no strictly 
four-dimensional y-matrix completeness or index identities 
are assumed. 

The Wess-Zumino model on (AdS) 4 is defined by the 
following action20: 

S [z,zt,F,Ft,x,xl 

= Skin [Z,zt,F,Ft,x,xl + Sint [Z,zt,F,Ft,x,xl , (2.6) 

where 

Skin = f dv,,{al'ztzs al'Z + iXZF"lX 

+ FtZAF + a (ztZsAF + FtZSAZ ) + 3a2ztZ Qz} , 

(2.7a) 

(2.7b) 

Here z is a vector of n complex scalar fields z", and its 
Hermitian conjugate zt has components z! = (z") *. Also F 
is a vector of n complex auxiliary fields Fa and its Hermitian 
conjugateFthascomponentsF! = (F a )*; and X is a vector 
of n right-handed spinor fields ~ with Y sXa = XQ and X is the 

conjugate with components X a = ~ so that X a Ys = - X a . 
We may then regard (z,X,F) and (zt,X,Ft) as independent 
chiral multiplets. Introducing the charge conjugation matrix 
C satisfying 

C T= -C, (CYa)T=CYa, (CYs)t= -CYs, (2.8) 
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we define X' by 

(2.9) 

so that X~ is left handed. From our point of view, since 
tr(!(1 ± Ys» = 2 we can regardx,x' as being effectively left­
and right-handed two-component spinors. We use "I to de­
note YI' VI'. We assume that VI' always contains the appropri­
ate metric connection for the quantity on which it acts. 

In (2.7b), wB (z) is the bare superpotential and wB (zt) 
its complex conjugate. Now W B (z) may be written as 

W
B 

(z) = (p(3/2)EI3!)A.Babcz"Zbz" 

and 

-a aw 
W' =-a. t ' Za 

aW 
W =-,a az" . 

(2.10) 

(2.11) 

In (2.7a) we have inserted renormalization matricesZs , ZF' 
ZA' ZSA' and ZQ' which, together with the bare parameters 
A.B , KB, VB' andpB in (2.10), provide counterterms neces­
sary for renormalizability when the theory is quantized. Fin­
ally, dv" is the invariant integration measure on (AdS)4 and 
p is the dimensional regularization unit ofmass. 21 

The kinetic and interaction actions in (2.7) are sepa­
rately invariant under the supersymmetry transformations 

{)z= E+X' 

{)X = FE + - i iZE _ , 

{)X = E+i izt + Ftc, 

{)F= - Li"lX - E+ax, 

(2.12a) 

(2.12b) 

(2.12c) 

(2.12d) 

where E + and E _ are the right- and left-handed components, 
respectively, of a Killing spinor E satisfying 

VI'E(X) = - (ia/2)YI'E(X) (2.13) 

andE+ = E_ ,E_ = E+ . 

We shall use the background field method 14, 15 so that, in 
the functional integral defining the quantum theory, the 
quantum fields denotedz'l,xq

, Fq (and their conjugates) are 
expanded about arbitrary classical background fields z,X,F, 
and their conjugates, according to 

(2.14 ) 

It is convenient to assemble the fluctuation fields y,j,71, 
and their conjugates into a single column vector V, with con­
jugate V, given by 

y 

y* 

v= :. ' V= (ytyTJffT1ji/') , 

71 
71' 

where V and V satisfy a Majorana-like condition 

V= VTi'G' , 

1) (12 o ® 0 
o 

o ) o . 
_C- 1 
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The notation in (2.16) means that each entry in the right­
hand matrix is multiplied by the left-hand matrix. 12 is the 
unit matrix in two dimensions. and C is as defined in (2.8). 

There is a natural scalar product 

(VI .V2 ) = (V2.VI ) 

= f dvx {yt Y2 + Y1 YI +11 h + 11 II 

+ 711112 + 1i2'1JI} . (2.17) 

The quantum field theory may be defined by the connected 
vacuum functional W [z,zt,F,Ft.X.X.K] with a source K 
coupled only to the quantum fluctuation vector 

expC:) 

= f d [V ]exp{~s [z'l,rIT ,Fq.Fqt.Xq.~] + (K. V) } • 

(2.23a) 

~). (2.23b) 

where 

(2.24) 

The scalar and fermion operators Ii~ and dB are defined by 

Ii~ = 012 - 'YB • dB = (-,., +%B)12' (2.25a) 

KB +3aMB) 
3a2 

• 

(2.25b) 

(2.18) K Bab =p(1I2)E).Babc FC. (2.25c) 

where S is as given by (2.6). 
The renormalization constants in Skin and the bare cou­

pling constants). B' K B' VB. and P B in Sint are written as ex­
pansions in Ii: 

00 

Z - 1 + ~ ft'Z (n) 
S,F, A,SA,Q - £.t S,F, A,sA,Q • 

n= I 

00 

).B=).+ L lin,).(n), 
n=1 

00 

KB =K+ L IinK(n), (2.19) 
n=1 

00 

VB = v+ L ft'v(n), 
n= 1 

00 

PB =P + L linp(n) . 
n=1 

The coefficients of lin in (2.19) are chosen so that W in 
(2.18) is finite order by order in the perturbation expansion. 
We adopt the minimal subtraction prescription21 so that the 
coefficients are fixed uniqUely by requiring they contain only 
poles in E. We use the notation S (n) to denote the O(ft') 
contribution to S in (2.6). Henceforth we suppress Ii. We 
write the renormalized superpotential w as 

w = (p(3I2)E/3!»).abcz"~r 

(2.20) 

where)., K, V, andp are as in (2.19). The one-loop contribu­
tion to W is generated by the quadratic fluctuations in the 
exponent of (2.18). We have 

S [z'l,rIT ,Fq,Fqt'Xq,~] 
t t­= S [z,z ,F,F ,X,X] 

+ (J,V) - !(v'Ii~V) + S/[ V.V] • (2.21) 

where Ii~ has the form 

-.-I/B 

(2.22) 
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Here, S[ [ V,V] consists of terms cubic in the fluctuations 
that provide interactions at two- and higher-loop order. It 
will be given explicitly in the next section. We choose the 
source K in (2.18) to cancel the linear term (J, V) in the 
expansion (2.21). 

To one loop, (2.18) and (2.21) yield 

W(I) [z,zt ,F,Ft,x,X] 

=S(I)[z,zt,F,Ft,X,X] + (i/2)ln(sdetli v ) , (2.26) 

where Ii v is obtained by replacing all quantities in (2.22) by 
their renormalized counterparts. The superdeterminant sdet 
in (2.26) appears as a consequence of integration over the 
anticommuting variables 1],;;' and is defined as follows, for a 
matrix 

acting on a space containing both bosonic and fermionic de­
grees offreedom: 

sdetX = det(A - BD -IC)(detD)-I. (2.27) 

The supertrace is correspondingly defined by 

str X = tr A - tr D . (2.28) 

We intend to use the Schwinger-De Witt kernel to in­
vestigate the singular behavior of sdet Ii v' From this point of 
view Ii v has the disadvantage that it is not second order in 
derivatives in the fermionic and auxiliary sectors. To cir­
cumvent this obstacle we write22 

liw = IiL liv IiR , 

where 

with 

-.-1/ 

U 
o 

- (-1 u= o 

o 
u 
o 

I. Jack 

(2.29) 

~), 
(2.30) 

(2.31a) 
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d = (iW +.#')12 , 

We then find 

o 
D 
o 

Yd) o , 
dd 

where 

a; = az + vl/2 
, 

so that aw is manifestly second order. 
From (2.29) and (2.30), 

(2.31b) 

(2.32) 

(2.33 ) 

In sdet av = In sdet aw - 21n det D + In det d . (2.34) 

If neither d nor d have zero modes then neglecting finite 
anomaly contributions 

In det d = ! In det dd = ! In det dd . (2.35 ) 

The operators a w , D, and ax = dd are all of the form 

a=Df.LDf.L+Yt>., Df.L=Vf.L+X!, (2.36) 

For such an operator, the Schwinger-De Witt kernel14,23,24 

[1 t>. (x,x';s) is defined by 

.a[1t>. d 
1-- = a[1 t>.' [1 t>. (x,x';O) = 8 (x,x') . 

as 
(2.37) 

The kernel has an asymptotic expansion as s JO of the form 

[1 t>. (x,x';s) 

- [il( 41ris)d/2]e - ;U(x,X')/2saV"; (x,x') 
510 

co 

X L a~(x,x') (is)n , (2.38) 
n=O 

where u(x,x') is half the square of the geodesic distance 
between x' and x, and aVM is the Van Vleck-Morette deter­
minant.25 As is well known, we have 

(00 ds J In det a = - Jo -; dvx tr [1 t>. (x,x;s) (2.39) 

and so, after substituting (2.38) in (2.39), we find 

(lndet a) pole = _i_f.l ~ dvx tra2t>.(x,x), 2 -EJ 
€ 1611 

(2.40) 

with a similar result for the superdeterminant obtained by 
replacing the trace with the supertrace. From (A2d) in the 
Appendix, 

a2t>.(x,x) = -bG!s G t>.ap + !(2a21t>. + yt>.)2 

(2.41 ) 

where 1 A is the unit matrix for the space in which a acts, and 

Gap = [Va,Vp ], 9f.L Y =Vf.L Y + [Xf.L,Y]. (2.42) 

We have for a w and ax 

yx= -3a212+.ff2-iW.#', X~ =0, 

G~p = - !Ra,BpuYPY<>" , (2.43) 

~), 
yx 

(2.44a) 

1870 J. Math. Phys., Vol. 27, No.7, July 1986 

x;~G 

G~~G 
where, in (2.44a), 

-g=Y.#'-~iYi. 
Since 

(2.44b) 

(2.44c) 

(2.45) 

(l( +a~») 
-MM ' 

- 2 
_ 2a212 _ yx = ( - MM + a 

iWM 

(2.46a) 

riM ) 
-MM+a2 

' 

(2.46b) 

we find, from (2.34), (2.35), (2.40), (2.41), and (2.43)­
(2.46), 

! i(ln sdet a v) pole 

= f.l~E JdVx tr{Vf.LMvf.LM+iAiA 
1611€ 

+ (K +aM)(K + aM) +2a2MM -!a4S}. 

(2.47) 

From (2.20) and (2.24), 

Mab = f.l(l/2)EAabcr + Kab , Mab = f.l(l/2)EA abczJ + i(ab, 

and therefore, from (2.25c) and (2.48), 

tr[(K +aM)(K +aM)] 

= f.lE[FtSF + a (ztSF + FtSz) + a2ztSz] 

+ f.lEl2 [a (TtF + FtT) + 2a2( Ttz + ztT) ] 

(2.48) 

+ a2KabK"b , (2.49a) 

tr MM = f.lEztSz + f.lE/2( Ttz + ztT) + KabKab , (2.49b) 

tr(Vf.LMvf.LM) =f.lEVf.LztSVf.Lz, (2.49c) 

AWA = f.lEXSWX, (2.49d) 

where 

sab =AacdAcdb , 

Ta = A abcKbc . 

So, inserting (2.49) into (2.47), 

! i(ln sdet av ) pole 

= -h-f dv,,{Vf.LztSVf.Lz + iXSWX 
1611E 

+ FtSF + a (ztSF + FtSz ) + 3a2ztSz 

(2.50a) 

(2.50b) 

+ f.l- El2 [a(TtF + FtT) + 3a2 (Ttz +ztT)] 

+ f.l-€[ 3a2
K ab Kab -! a4 tr S]} . (2.51) 

Inserting into (2.26), we find that W(1) may be rendered 
finite by taking in S (I) 
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and 

Z11) =Z~I) =Z~I) =Z11J =Z~) = - (1!IWE)S 

(2.52) 

w(1) = ( - a/16~E) {J.L EI2 Ttz + KabKob - i a2 tr S} . 
(2.53 ) 

Hence the divergences preserve supersymmetry at one­
loop order. However, the necessity for adding a counterterm 
to w, first recognized by Diisedau and Freedman,9 vitiates 
the nonrenormalization theorem,13 which is valid on flat 
space-times. Closely similar behavior is exhibited at two­
loop order, as we shall show in the next section. 

The results in (2.52) are consistent with those obtained 
by Bellucci and Gonzalez8 and also by Diisedau and Freed­
man.9 Bellucci and Gonzalez 10 also calculated the one-point 
functions for the scalar and auxiliary fields. In our formal­
ism the one-loop one-point functions for z and Fare given by 
(aw(1)/az) Iz= 0, F= O,x = ° and (aW(I)/aF) Iz=o, F= O,x= ° 
and hence their divergences arise from the terms linear in z 
and F in (2.51). These terms correspond precisely to the 
divergences Bellucci and Gonzalez10 found for their one­
point functions. 

Diisedau and Freedman9 calculated the one-point func­
tion for the scalar field after eliminating the auxiliary field by 
using its equation of motion 

Fa = - J.L - ew,a - a~ . (2.54) 

After using (2.54) in (2.51), the linear terms assume the 
form 

16~E f dv3a[ Tt(2az - KZt) + (2azt - zK)T] J.L - £/2 

_la(TtXabcztzt+Ta). ZbZC) 
2 abc abc 

- a(TaV' + Tava ) J.L -E}. (2.55) 

The linear term in z then yields a divergence corre­
sponding to that found by Diisedau and Freedman for the 
one-point function of the scalar field. They inserted a coun­
terterm analogous to (2.53) before calculating the two-point 
functions and hence eliminated the divergence from the qua­
dratic term in (2.55). 

III. TWO-LOOP CALCULATION 

In this section we shall calculate the two-loop counter­
terms for the quantized Wess-Zumino model on (AdS)4' 
We shall demonstrate that they have the same form as the 
one-loop counterterms in (2.51). We rely heavily on a gen­
eral technique devised earlierl6 for the evaluation of two­
loop divergences. The reader is referred to Ref. 16 for a de­
tailed description of the method and a comprehensive list of 
references. We shall confine ourselves here to a brief account 
of the salient features of the procedure. 

In the context of the background field methodl4,15 the 
two-loop vacuum functional W(2) is expressed as a sum of 
vacuum Feynman graphs constructed using propagators de­
rived from the Green's function Gv for t1v in (2.21), defined 
by 

(3.1 ) 
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As we remarked in Sec. II, t1 v is not of an appropriate 
form for application of techniques based on the Schwinger­
De Witt kernel. 14,23,24 We focus attention instead on the op­
erator t1w defined in (2.29), whose Green's function satis­
fies 

t1 wGw (x,x') = - c5d (x,x') . (3.2) 

By virtue of (2.29), Gv and Gw are related by 

Gv = t1R Gw t1£ . (3.3) 

The Green's function for an operator t1 of the form 
(2.36) can be written, using (2.37), as 

G", (x,x') = - i fO ds ff '" (x,x';s) , (3.4 ) 

and has an expansion corresponding to (2.38), 

G",(x,x') = -i{Go(x,x')a~(x,x') +RI(x,x')a~(x,x') 

+ R2(x,x')a~(x,x')} + H"'(x,x') , (3.5) 

where 

r d t1112 
G (x ') = q - 1) VM 
o,x 41T(1I2)d (_ 2U)(I/2)d-1 ' 

(3.6a) 

t1112 { R = ~ __ 1_ r (l.d _ 1 _ n)( _ 2u)n+ 1- (I/2)d 
n 4n + 1 1T(I/2)d 2 

(3.6b) 

The first three terms on the right-hand side of (3.5) 
account for all local divergences of a renormalizable theory 
in four dimensions. The remainder term H'" is finite as E W 
and nonsingular as x-x' with up to two derivatives acting 
on it. When the expansion (3.5) is substituted into the 
expression for a two-loop Feynman graph, divergences arise 
from products of two or three functions of the type Go or Rn 
in (3.6). All such divergences are tabulated in Ref. 16. They 
take the form of a c5-function with up to four derivatives 
acting on it, multiplying poles in E. After performing a spa­
tial integration we are required to evaluate the coincidence 
limits of products of a~'s with various derivatives acting on 

'1' (r, m 0 I \ I ' 
I \ I \ 
\ , I 

\ / '11 'J. I ' ..... ,./ " I " / -" 
(a) (b) (g) (h) 

..... -r, ...... -r ..... "-, --, 
/ I , 

I I ' / \ ..... , 
I I \ I I \ ~ } U \ ~ ) \ I I 

\ I I \ / , / 
" I / " " .... ; --; 

(c) (d) (j) (j) 

CD CD .... ~ 0 
(e) en (k) 

FIG. 1. Two-loop diagrams. 
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them. Some useful identities are given in the Appendix. 
The Feynman graphs are constructed with vertices fur­

nished by the interaction term S[ in (2.21). Explicitly this 
has the form 

W(2) (in other words precisely those diagrams contributing 
to the effective action) . 

Writing 

(1I2)E I 
s[ = T dVx{A abe y"/, IC +x abey! yl/! (3.8) 

- Aabe y"TJ'b1]C - X abey! TJb 1]; 

+ aAabe y"/,yC + aX abey! Y1 yn . (3.7) 

As far as divergences are concerned, we need only consider 
one-particle-irreducible (IPI) diagrams contributing to 

I 

we have the following amplitudes for the diagrams giving 
divergent contributions to W(2l shown in Fig. I (with scalar, 
fermion, auxiliary indices represented by dashed, unbroken, 
and wavy lines, respectively): 

(2) t t - _ ftE I - del,..sa ,..sb ..Ac W IPI [z,z ,F,F ,x,x 1a - 2 dvx dVx,AabeA S dS eS I' (3.9a) 

W (2) [z,zt,F,',Ft v:;;l = /IE I dv dv fAX del,..sa ..ASb ,..sAc +..!..A A ,./Jad..ASbe,..sAcl + "!"X abe X del,..s ..AS ,..sA } 
IPI '/I. '/I. b r x x' abc S dS eS I 2 abc del S S S 2 S ad S be S cl ' 

Wl~~ [Z,zt,F,F\x,x1c = ~ ftEa I dvx dVx,AabeX delgSadgSbe (gAscl + gSAcl ) , 

W (2) [ t,F,',Ft - 1 3 E 2 I d d ' 1" de/,..sa ,..sb ,..sc 
IPI z,z ,x,x d = 2ft a Vx Vx'/\'abc/\' S d S e S I' 

wm [z,zt,F,Ft,x,x1e = - ~E I dvx dvx,{tr[Aabe gEcd (x,x')X delt'/(X',x) ]gSbe (x,x') 

+ ~ tr[Aabc gEcd(x,x')AdelgEla(x',x) ]gSbe(x,x') 

+ ! tr[ X abegEcd (x,x')X delgEla (x',x) ]gSbe (x,x')} , 

Wm [z,zt,F,F\x,x11 = ftE I dvx dvx' gSF/(X',x)Abed gEde (x,x')X etifgEs/(x',x) , 

Wm [z,z\F,F\X,X]g 

= _~E I dvx dV-X'{gSFab (x',x)X bedgSAde(X,x')AealgFS/(x,x') +gSFab(X',x)XbedgSAde(X,x')XealgFScl(X,x') 

+ gSFab(x',x)Abed gSAde(x,X')Aeal gFScf(x,x') + gSFa b(X',x>Abcd gSAde (x,x')X ealgFScl(x,x')} , 

W~~~[z,zt,F,Ft,x,x1h = -..!.. ~ IdVx tr(SgA)diag, 
2 1611E 

Wl~~ [z,zt,F,F\x,xL = - ..!..~Idvx{3a2 tr(SgS)diag - tr(SDP!)diag}, 
2 1611E 

(2) [t t -1 I ia Id c;..AS C;,..sA W IPI z,z,F,F ,x,x j= --~ vxtr(..,s +..,S )diag, 
2 1611E 

Wm [z,zt,F,Ft,x,x1k = - ..!..~IdVx tr(SWgE)diag . 
2 1611E 

(3.9b) 

(3.9c) 

(3.9d) 

(3.ge) 

(3.9f) 

(3.9g) 

(3.9h) 

(3.9i) 

(3.9j) 

(3.9k) 

The diagrams (3.9a)-(3.9g) are the genuine two-loop diagrams generated by the interactions in (3.7), while the dia­
grams (3.9h)-(3.9k) represent counterterm diagrams arising from substituting the one-loop results in (2.52) and (2.53) into 
a: in (2.2). In (3.9a)-(3.9g) we have suppressed the arguments of the Green's functions when they occurin the usual order, 
x,x'. In (3.9h)-(3.9k) the subscript diag indicates the coincidence limit as x'_x, and 

- (S S= o ~). 
We may now use (3.3) to express the amplitude for each diagram in terms of Gw and then apply the standard technique 

adumbrated earlier to extract the divergences. Writing 

(3.10) 
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we have, from (3.3), (3.8), and (2.30), 

gS = G s, gAs = _ JIGs + UG AS, gSA = - G S JI + G SAU, gA = JIGS JI - JIG SAU - UG SA JI + UG AU, 

gSF=G SF , gFS=dG FS , gFA= _JlGFS+dGFAU, gAF= _JlG SF + UG AF , gF=dG F. (3.11) 

The AS and SA components of every heat kernel coefficient for Il. w are zero and so we may disregard G AS and GSA. 
In the case ofthe diagrams that do not arise from interactions involving auxiliary fields, namely (3.9d)-(3.90, (3.9i), 

and (3.9k), we can obtain the divergences from general results calculated previously.26.21 In the case of the remaining 
diagrams we can compute the divergences ab initio fairly straightforwardly. For the genuine two-loop diagrams, after using 
(3.11) to express components of G", in terms of those of Gw, we substitute the expansion (3.5) for Gw. We then use the results 
tabulated in Ref. 16 to obtain the divergent parts of products of two or three functions of the type Go or Rn , in the form of pole 
terms multiplying derivatives of B-functions. We may then integrate over x' and use the results in the Appendix to evaluate the 
coincidence limits of the various heat kernel coefficients an and their derivatives that occur. We shall exemplify the procedure 
by examining the contribution from (3.9a) in some detail. From (3.11) we may rewrite (3.9a) in the form 

Wl~~ [z,zt,F,F t,x,x 1 a = II + 12 + 13 + 14 , 

where 

(3.12) 

I = p.E fdV dv A. 1 de/GSa G Sb (MegGS hM + a2G Se ) 12 xx'abc de gh/ /' (3.13a) 

(3.13b) 

I - p.E a f dv dv A. 1 de/GSa G Sb MegGS 
3-

2 
x x'abc de gf' (3.13c) 

I = p.E f dv dv A. 1 de/GSa G Sb ( _ OGA)e 
4 2 x x' abc de/ . (3.13d) 

Let us consider II' We have, from (3.5), 

I pole ip.E f d d 2 7j de/{G 2R [Sa Sb (M- eg S hM 2 Se) 2a Sa Sb (M- eg S hM 2 Se ] 
I =""2 Vx Vx' /l.abc/l. 0 I aO daO e a l g hf + a a l / + I daO e ao g hf + a ao /) 

+ G~aOSadaoSbe (Megao
Sg hMhf + a2ao

Se
/ )} 

p.Ef 2 7j del. 2 {Sa Sb - eg S h 2 Se Sa Sb - eg S h 2 Se } - - dvx dVx'/l.abc/i. GO aO daO e (M H g Mhf + a H /) + 2H daO e (M ao g Mh/ + a ao /) . 
2 (3.14) 

Referring to Ref. 16 and making allowances for the change from Euclidean to Lorentzian signature, we find 

2 _iP.-2E(2 1) d I 

Go RI - (l~)2 ~ +-; B (x,x) , (3.15a) 

G03 _ ip. -2E ...!.....!..(O + 2a2 )Bd(X,x') 
(16r)2 E 2 ' 

(3.15b) 

r!2 _ip.-E .!.~d( ') 
\To - £ -.2 U x,x , 

1011 E 
(3.15c) 

and hence, using the following results obtained by substituting (2.44a) into (A2) in the Appendix, 

(aISab)diag = - (MM)\, (aOSab)diag =Bab , (3.16) 

we have, after substituting (3.15) into (3.14) and integrating by parts, 

Irle
= - (i;)2f dVx{{~+ ~}[A.abc(MM)b)ae/(MM)e/+! tr(SMMMM) + ~ a2tr(SMM)] + ! ~a4trS 

-...!.....!..tr[VI'MSVI'M] +...!.....!..a2tr(SMM)} + i-.2...!..fdVx{tr(SMHSM) +Uabcldbe(MMY/HSa 
4 E 2 E 16'/1 E e 

+ 3a2 tr(SHs)}diag . (3.17) 

For 12 , we have 

(3.18) 
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Using (3.15) once more, but now with the coincidence limits 
Sab - - ab Sab 

(a l )diag = (K + aM) , (ao )diag = 0 , 

we obtain 

1 -E (2 l)f - - 1 If rifle = - a '" 61f2 2 -2 + - dvx tr[S(K + aM)M] + ia ----:2 - dvx tr(SHSM)diag . 
2 (1 ) e E 1611 E 

Similarly, 

1 -E (2 1) f - 1 1 f -rrle=-a '" -rr 2 -2 +- dvx tr[SM(K+aM)] +ia----:2- dvx tr(SMHs)diag' 
2 (16 ) e- E 1611 E 

Finally, 

l pole - i",E fd d 1 ., def{o 2( 00) Sa Sb Ac 20· D ( DO Sa Sb Ac 
4 - 2"" Vx Vx·/Labc/L 0 - 0 aO daO eaO f + Q£~I - o)ao dal eaO f 

+ G0
2( - DRI)aOSadaoSbealACf - G02RlaOsadaOSbe (DaIA)Cf - 2G02altRIao SadaoSbe (altalAYf 

+ 2GoRi ( - DRI)aOsadalSbealACf + R12( - oGO)aISada/beaoACf 

+ 2( - oGo)RIHSadalsbeaoACf + 2Go( - DRI)HSadaOSbealAcf + Go( - OGO)HsadaOSbeaoACf}' 

We find, consulting Ref. 16 again and once more taking account of the change in space-time signature, 

2 _i",-2E 1 9 4d , 
Go ( - oGo) - -rr 2 - - a l) (x,x ) , 

(16 ) E 5 

i",-2E (1 11) 2d , 
GaR I ( - oGo) - (16-rr)2 4 c +"2 -; a l) (x,x) , 

2 - i", - 2E {lID 4 ( 1 1 1) 2} ~d , 
Go (- DR I ) - -rr 2 -- - -2 + -- a u (x,x), 

(16) 2 E e 4 E 

2 _i",-2E 1 1 d , 
Go alt RI - -rr 2 --altl) (x,x ) , 

(16 ) E 2 

. -2E (1 1 1) 
GaRI( - DR I ) - I", -rr 22 -2 + -- l)d(X,x'), 

(16) e 2 E 

R12( - oGo) - 4[i", - 2E/(16-rrE)2]l)d(X,X') , 

G0
2( - DR 2 ) - 4[i", -2E/(16-rrE)2]l)d{X,x') , 

Go{ - oGO)R2-O, 

Go{ - oGo) -4(i", - E/16-rr) (lIE)a2l)d{x,x') , 

Go{ -DR I )-2 i",: J..-l)d(X,x') , 
161T E 

R I{ -oGo)-2 i",: J..-l)d{X,x'). 
1611 E 

Using (2.44) in conjunction with the general results in the Appendix we find 

{alAab )diag = - 2a2l)ab , 

(DaIAab )diag = is a4l)\ , 

( 3.19) 

(3.20) 

(3.21 ) 

(3.22) 

(3.23a) 

(3.23b) 

(3.23c) 

(3.23d) 

(3.23e) 

(3.23f) 

(3.23g) 

(3.23h) 

(3.23i) 

(3.23j) 

(3.23k) 

(3.24a) 

(3.24b) 

{a/ab)diag =~a4l)ab' (3.24c) 

and hence, substituting results from (3.15) and (3.23) into (3.22), integrating over x', and using (3.16) and (3.24), we obtain 

lpole = _ '" -E fdV {~A (MM)b X aef(MM)c - ~J..-a4 tr S} 
4 (16-rr) 2 x C abc e f 15 E 

+ i-2 J..-f dvx {UabcX dbe(MM)cfHsae - tr(SOHA)hiag . 
1611 E 

Adding (3.17), (3.20), (3.21), and (3.25), we find 

1874 J. Math. Phys., Vol. 27, No.7, July 1986 

(3.25) 

I. Jack 1874 



                                                                                                                                    

Wl~~ [Z,zt.F,Ft,x,X]~le 

= - (i;)2 J dvx { ~ (~ + :) [tr(SMMMM) + 3a2 tr(SMM) - a tr[S(K + aM)M + SM(K + aM)]] 

+ (~ + ~)Aabe(MM)bel aef(MM)cf - ~~tr[VI'MSVI'M] - ~~a4 trS + ~~a2 tr(SMM)} 
t- E 4 E 30 E 2 E 

+ 1:r : J dvx{tr(SMHsM) + 4Aabel dbe(MM)CfH Sa
e + 3a2 tr(SH s ) 

+ a tr(SMH s) + a tr(SHsM) - tr(SOHA)}diag . (3.26) 

The remaining genuine two-loop diagrams involving auxiliary fields, namely (3. 9a), (3. 9b ), and (3. 9g) , can be treated in 
a similar fashion. We obtain divergent contributions as follows: 

W \~~ [z,zt,F ,Ft,X,X Hole 

= (i;)2 J dVx{ - 3a2(~ + : )tr(SMM) + (~ + : )a trS [M(K + aM) + (K +aM)M] - : a4 
trS 

+ ~ (~ + :) [AabeAdefMbeMcf(I< + aM)ad + label defMbeMcf(K + aM) ad ] } 

+ i-.2 ~JdVx {6a2 tr(SHS) + 2a[tr(SMHS) + tr(SHSM)] 
1671 E 

- ad- be Scf - abe- def S } + AabeAdefM M H + A 11. MadMbe H cf diag , 

W\~~ [Z,zt,F,Ft,X'X]~le 

(3.27) 

3 p-E J {(2 1) - (2 1) - - - 2 } ="'2 (16-,,-2)2 dvx 6 c+-; a2tr(SMM)- c+-; atrS[M(K+aM) + (K+aM)M] +-;a4trS 

-3 i-.2~Jdvx{6a2tr(SHS) +atrS(MHs+HsM)}diag, 
1671 E 

(3.28) 

W (2) [ tFFt -]pole_ 1 p-E 1 Jd {-A' lbedM leaf A +-Aabl M-de, A'cf} 
'PI z,z" ,X,X g - -"'2 (16-,,-2)2 E Vx ab/!. de/!. cf /!.bed /!.eaf . (3.29) 

In obtaining (3.29) we have used the result 
SF .-

(al'ao )diag = -! ,Yy/-, ' (3.30) 

which can be proved using (Ala), (2.36), and (2.44b). 
We also need to consider the counterterm diagrams (3.9h) and (3.9j), which contain auxiliary fields. Using (3.11) once 

more, we decompose (3.9h) according to 

w m [z,zt,F,Ft,X,X] h = J, + J2 + J3 + J4 , 

where 

J, = - i -.2 ~ J dvx tr [S(MG sM + a2GS) ]diag , 
161T E 

J2= - ia-.2~fdvxtr(SGsM)diag, 
1671 E 

ia If - S J3 = - ----::::2 - dvx tr(SMG )diag' 
1671 E 

J4 = I~E J dvx (DGA)diag . 

Using (A3) together with (3.16), (3.19), and (3.24), we obtain 

Jrle =2 ~E 2 Jdvx{tr[SMMMM] +a2tr(SMM)}- :-'l~fdVX tr[S(MH sM+a2H S)]diag, 
(1 E) 101T E 

Jfle = - 2a ~E 2 fdVx tr[S(K + aM)M] - i~ ~fdVx tr(SHSM)diag , 
(1 E) 161T E 

J pole 2a P -E fd [S'M- K M ia 1 fd - S 
3 = - -.2 2 Vx tr (+ a )] - ----::::2 - Vx tr(SMH )diag' 

(1671E) 1671 E 

Jpole_ p-E 1 29 4fd S i 1 fd (OHA 
4 - - --.2 2 -a Vx tr + £--.2- Vx )diag, 

(1671) E 15 1011 E 
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(3.32b) 

(3.32c) 

(3.32d) 

(3.33a) 

(3.33b) 

(3.33c) 

(3.33d) 
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so that, adding (3.33a)-(3.33d), 

wm [z,zt,F,Ft,x,xHole 

= 2 Jl ~ E 2 J dvx {tr(SMMMM) + a2 tr(SMM) - a tr[S(K + aM)M] - a tr[SM(K + aM)] - ~ a4 tr S} 
(16 E) 30 

In a similar fashion we find 

Wm [z,zt,F,Ft,x,x1)°le 

= 2 Jl ~E 2 J dvx {a tr[S(K + aM)M] + a tr[SM(K + aM)] - 2a2 tr(SMM)} 
(16 E) 

+ ~ ia-2 ~ J dvx {tr(SMH s) + tr(SHsM) + a tr(SHS)}diag . 
2 1611 E 

(3.34) 

(3.35 ) 

We now turn to the diagrams that involve only fermions and scalars. The procedures for calculating the divergences of 
two-loop graphs such as these have been described in detail in Refs. 26 and 27 and so we shall confine ourselves here to setting 
down the results: 

= (~::)2J dVx{~ tr(SMMMM) -(~ - ! !)tr[V/lMSV/lM] -~ tr[S(K+aM)(K+aM)] 

+ 4(~+ ~~ \' abe (MM)CdX dbe(MM)ae - i~tr(As;A) - 2(~ - 2.~)a2 tr(SMM) _J2.~a4 trS 
C 4 EF C E2 4 E 30 E 

- ~ (~ + ! ) [Aabc',tdeIMbeMCI(K + aM)ad +X abeX delMbeMcl(K + aM) ad ]} 

+_,_' ~JdV {-4A Xcde(MM)aH Sb -tr(SOHS)+tr[S'l2H F]-.!....tr(S'lMH F)-.!....tr(S'lMHF) 
16r E x abe e d 2 2 

- 7 A M- adMbeHcl -X abeX delM M H S } /l.abe del ad be cl ' diag 
(3.37) 

W (2)[ t,F,',Ft -]pole_ 1 Jl-
E 

1 Jd {-A' lbedM lealA +-Aab7 M- de , A'c/} 
IPI z,z ,X,X I - - -2 2 Vx ab/l. de/l. cl /I. bed /l.eal ' 

2 (161T) E 
(3.38) 

wm [Z,zt,F,Ft,x,xHole 

Jl-
E J {(III) - - 2 - (1 1 1) - -= dvx 2 - - - - tr(SMMMM) + ...2 a2 tr[SMM] + 2 ...2 - - - tr[S(K + aM) (K + aM)] 

(16r)2 C 4 E f'- f'- 4 E 

. ( 1 1 1) 7--' 1 1 4 } 1 i 1 J {2 -S'H S -SOHs } +1 ---- tr(lw;vA) +--a trS -- £-2- dvx 3a tr( ) -tr( ) diag' 
C 3 E 15 E 2 1011 E 

(3.39) 

wl~~ [z,zt,F,Ft,x,xHole 

= Jl-
E 

JdV {- 4(~ - ~~)tr(SMMMM) + i (~- ~~)tr(AstA) + 2(~ - ~~)tr(V/lMSV/lM) 
(16r)2 x C 4 E C 6 E f' 2 E 

+ 4(~-~~) a2 tr(SMM) +..!..!..~a4 trs} - ~-1-~JdVx tr[S'I(i1 +ff)HF] . (3.40) 
C 2 E 30 E 2 16r E 

Adding (3.26)-(3.29) and (3.34)-(3.40), we obtain the final result for two-loop divergences: 

w(2)pole = Jl-
E 

(~- ~~) JdV {tr[V MSV/lM] 
(1~)2 C 2 E x /l 

+ itr[As;A] + tr[S(K + aM)(K + aM)] + 2a2 tr[SMM]}. (3.41 ) 
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First we observe that the nonlocal divergences involving 
H have canceled, demonstrating renormalizability at two­
loop order. We also note that the local two-loop divergences 
have the same form as the one-loop divergences in (2.51) 
apart from the (possibly fortuitous) absence of a term in a4

• 

From the discussion following (2.51) we deduce that we 
may ensure the finiteness of W(2) by taking in S(2) 

Z (2) -Z(2) -Z(2) -Z(2) -Z(2) 
A - S - 5,4- F - Q 

= _ I (..!.. _ ..!.. ..!..) S (2) 

(lW)2 C 2 € ' 

W(2) = (l~)2 (~ - ~ !) 
XWE12sabj(bcAacdzti +sabKacj(bc} , 

where 

S (2)a - SC -; adel 
b - d/l. /l.bce· 

(3.42a) 

(3.42b) 

(3.43 ) 

Hence supersymmetry is preserved by the two-loop 
counterterms. However, precisely as in the one-loop calcula­
tion the nonrenormalization theorem fails to hold owing to 
the necessity for adding a counterterm linear in z to the su­
perpotential w. 

IV. CONCLUSION 

We have calculated the one- and two-loop divergent 
counterterms for the Wess-Zumino model defined on a four­
dimensional anti-de Sitter space background. We used the 
version of dimensional regularization proposed by Bellucci 
and Gonzalez 18 in which the curvature tensor is regarded as 
residing in four dimensions while all other quantities are 
analytically extended to 4 - € dimensions. This corresponds 
to regarding the extra dimensions as flat. We demonstrated 
that this regularization procedure preserves supersymmetry 
up to two-loop order as far as the counterterms are con­
cerned. We also showed that the superpotential w(z) ac­
quires a divergent contribution linear in the scalar field z at 
both one and two loops. Hence the nonrenormalization 
theorem is no longer valid on (AdS) 4' This extends the work 
of Diisedau and Freedman9 to two-loop order. The diver­
gences of the one-loop one-point functions for z and the aux­
iliary field F are derived from the linear terms in z and F in 
(2.51). We immediately confirm the results of Bellucci and 
Gonzalez for these quantities, 10 and verify the result of Dii­
sedau and Freedman for the one-point function of the scalar 
field after eliminating Fby means of its equation of motion. 

The method we used has the advantages of obtaining 
results for divergences relatively speedily and systematical­
ly, but, on the other hand, since it is not explicitly supersym­
metric there is no guarantee that it will be useful for calculat­
ing the finite contributions. An explicitly supersymmetric 
procedure for performing two-loop calculations while re­
taining the simplicity and elegance of the heat kernel method 
has recently been suggested by Abdalla and Abdalla.28 They 
expand the Green's function in terms of the heat kernel coef­
ficients in a similar fashion to (3.5), but use a nonzero lower 
limit of integration in (3.4) as a cutoff, instead of analytical­
ly continuing in d. It seems likely that a calculation using this 
method would be formally similar to ours and yield corre-
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sponding results for the two-loop divergences. It would be 
interesting to determine whether the expectation value of F 
is zero at two loops using an explicitly supersymmetric regu­
lator as seems indicated by the similarity of the one- and two­
loop counterterms. 

Note added in proof: Recently our attention was drawn30 

to the fact that the Green's functions we use do not explicitly 
satisfy the appropriate boundary conditions for (AdS) 4 (see 
Ref. 31). We believe that the short-distance behavior of the 
Green's functions leading to the divergences we have com­
puted is unaffected by the boundary conditions; however, 
there remains the possibility of additional divergences aris­
ing from antipodally separated points, and this is currently 
under investigation. 
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APPENDIX: SCHWINGER-DE WITT KERNEL 
IDENTITIES 

In this Appendix we shall list some useful identities for 
the kernel coefficients ae (x,x'), which appear in the asymp­
totic expansion (2.38) of the Schwinger-De Witt kernel for 
an operator ofthe form (2.36). 

By substituting the expansion (2.38) into the defining 
equation (2.37) for the Schwinger-De Witt kernel, we find 
the recurrence relations 

u;J.lD I'a~(x,x') = 0, 

nae(x,x') + ~Dl'ae(x,x') 
= - .:1v-J12.:1[ .:1if~ae_1 (x,x')] . 

(Ala) 

(Alb) 

By iterative solution of this equation we may readily 
obtain expressions for the coincidence limits of the coeffi­
cients ae and their covariant derivatives (after using results 
for the coincidence limits of derivatives of .:1vM and U given 
elsewhere. 14

,24.29 The most useful results for our purposes 
are as follows: 

(aO~)diag = 1~, 
(a1~)diag = - 2a21~ - y~, 

(D{JDaa1~)diag 

- n(G!I'G~{J1' + G:I'G~al') 

(A2a) 

(A2b) 

+ !G~(2a21~ + y~) + !(2a21~ + Y~)G~ 
+ Jba4ga{31~ -!..@' {J..@' a Y~ , (A2c) 

(a2~)diag = nG!{JG~a{J + !(2a21~ + y~)2 
_ tsa41~ + !..@'2y~, (A2d) 

where!!} a and G ~ are defined in (2.42). Two useful results 
for the coincidence limits of the Green's function G~ in 
(3.5), and its covariant derivatives, are as follows: 

G 
.2",,-E ~ ~ 

~diag = -1- £-2 a1 eliag + H diag' 
€ !tn. 
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2 • 2 fl - E {D 2 aId a 1 a} (D Ga)diag = -1--- a1 +- a2 --Ra1 
€ 16~ 2 6 diag 

(A3b) 

Finally a word is in order about the transition from Eu­
clidean to Lorentzian signature. The functional integral eiW 

defining a field theory on a space-time with signature 
( + , - , - , - ) may be obtained from the functional inte­
gral e - W defining the theory on a space-time with Euclidean 
signature by replacing X4 by ixo. As a consequence the funda­
mental relation, 16 from which we obtain the residues of the 
poles in € arising from products off unctions of the type Go or 
Rn in (3.6), takes the form 

fl - E 21T'( 1I2)d d 

--------- 0 
C - 2U)(1I2)(d-6) 0 rq d) , 

for 0 = OCE). 
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Generalized conditions for the decoupllng theorem of quantum field theory 
In Mlnkowskl space with particles of vanishingly small masses 
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The proof of the decoupling theorem of quantum field theory given earlier [E. B. Manoukian, J. 
Math. Phys. 26, 1065 (1985)] in Minkowski space, in the distributional sense, for theories 
involving particles with vanishingly small masses as well is extended under more general 
conditions, thus being applicable to a larger class of graphs. All subtractions of renormalization 
are carried out at the origin of momentum space with the degree of divergence of a subtraction 
coinciding with the dimensionality of the corresponding subdiagram. 

I. INTRODUCTION 

In an earlier paper, I referred to as (I), a proof of the 
decoupling theorem of quantum field theory was given in 
Minkowski space, in the distributional sense, for theories 
with particles of vanishingly small masses under sufficiency 
conditions. These sufficiency conditions are stated in 
Theorem 1 (Sec. II). In the present paper, the theorem is 
proved (Theorem 2) under more general conditions thus 
extending the validity of the decoupling theorem to a larger 
class of graphs involving particles of vanishingly small 
masses. The theorem establishes the vanishing of the renor­
malized Feynman amplitudes in Minkowski space, in the 
distributional sense, when any subset of the masses become 
large and some of the remaining masses are scaled down to 
zero. The study is very general in that we allow these masses 
to approach their asymptotic values at different rates. Exten­
sive use is made of a key estimate established in (I) that 
bounds the amplitudes in Minkowski space by similar ampli­
tudes in Euclidean space in absolute values. The theorem 
established in Minkowski space is also applicable in Euclid­
ean space with nonexceptional external momenta. All the 
subtractions of renormalization are carried out in momen­
tum space about the origin with the degree of divergence 
d(g) associated with a subtraction coinciding with the di­
mensionality of the corresponding subdiagram g. 

II. PROOF OF THE THEOREM 

Suppose G is a proper and connected graph. Let 
p, = {p, 1, ... "."s ,p: + 1, ... "."s + k,p,s + k + I, ... ,p,p} denote the set of 
masses in G, where p,i > 0, i = 1,2, ... .,0. We are interested in 
studying the limits 

lim (lim T }~,~ .. ,s~" ... ,A. (/») , 
S, •... 'Sk-+"" E-+ + 0 

(1) 

A." ... ,A,-+O 

where 

T t~ .. ,Sk;A." ... .A., (/) 

= r dP/(P) r dK JR4," JR4n 

1: 1: .+1 1: s+k s+k+1 P) 
~ I ••. ~k P, ""'~k p,,p, , ... ,p" (2) 

where R" is the renormalized (subtracted out) Feynman 
integrand associated with G, and P= {p~, ... ,p~}, 
K = {k ~ , ... ,k ~} denote, respectively, the set of external and 
internal (independent) momenta. Here/(P)EY(lR4",) is a 
Schwartz function. For E>O, Al "'O, ... ,A.. #0, 1";;51 < 00, ... , 

1";;5 k < 00, the integral in (2) is absolutely convergent. Here 
R., (P ,K,p,) has the familiar form 

L 

R.,(P,K,p,) = A (P,K,p,) IT D I-I, E>O, (3) 
1=1 

m n 

QI = L aI/Pi + L buki pl+kl, (5) 
i= I j= I 

where P,1Ef..t, and A is a polynomial in its argument and may, 
in general, be a polynomial in (p,S + I) -1, ... , (p,P) -I as well. A 
propagator carrying a momentum QI will be written in the 
form 

P,I > 0, (6) 

where, for P,/E[p, I, ... ,p,S], 81=0, and for P,/E[p,s+ I, ... "up], 81 
is some non-negative integer. The latter is well known for 
massive higher spin fields, and where P(QI,p,/) is a polyno­
mial inP,I' For P,/E [p,I, ... ,p,S], D +(QI'O) denotes the zero­
mass propagator. We assume throughout that 

degrD+(QI""'/)";; -1, (7) 
1'/ 

(8) 

The E-+ + ° limit in (1) establishes2 the existence of the 
renorma1ized Feynman amplitudes in Minkowski space in 
the distributional sense. 

In (I) the following theorem is established. 
Theorem 1: Suppose (a) there are no proper, connected, 

and divergent [d (g) >0] subdiagrams gC G such that all the 
masses ing are from the set {p,1, ... ,p,'}; and (b) any subdia­
gramG' ~ G, whereG /G' depends solely on the masses in the 
set {p,1, ... "u'}, is such that d(G') <d(G). Then 
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(9) 

for allf(P)E Y(R4m
), and where the limits SI, ... ,Sk~(X)' 

AI, ... ,A.s-o are taken independently. 
Here we recall that G is a proper and connected graph. 

The symbol C may include equality, and the symbol g; ex­
cludes equality. Here G /G I represents the graph G with G I 

shrunk in it to a point. 
The application of Theorem 1 is simple as it requires no 

computations whatsoever and all that it requires is a mere 
examination of the structure of the graph G. For example, let 
G denote the electron self-energy graph in quantum electro­
dynamics, in any order, without photon self-energy inser­
tions, with m denoting the electron mass and p, denoting a 
photon mass. We note the following: (a) there are no proper 
(and connected and divergent) subdiagramsgCG (includ­
ing G itself) consisting solely of photon lines; and (b) for any 
subdiagram G'g; G, such that G /G I consists solely of photon 
lines we necessarily have d(G ' ) <d(G) ( = 1). Hence the 
conditions in Theorem 1 are true and if we scale m by S andp, 
by A, and take the limits s~(X), A-o, the statement in (9) 
follows for the graph G. We note, however, that once we 
insert a photon self-energy graph in G, then we may create a 
subdiagram G I in G such that G /G I consists solely of photon 
lines and d (G ') = d ( G). Hence Theorem 1 is not directly 
applicable, but the statement in (9) still holds true as seen 
from the following theorem. 

In order to state Theorem 2, we denote by Go any con­
nected and amputated graph with only two external lines to 
Go such that the mass (or masses) in the two external lines to 
Go are from the set {p, I , ... "us}. Any such subdiagram will be 
called a Go graph. By attaching the two external lines, with 
corresponding propagators D 0+ (Q), to a Go graph, we gen­
erate an unamputated graph which we denote by G ~ and 
refer to it as a G ~ graph. We assume that 

d(G~) =d(Go) + 2degrD o+ (Q).;;; -1. (10) 
Q 

We note that for Go g; G (or G ~ g; G) the external two lines 
to Go (or of G ~ ) are necessarily internal lines in G, since Gis 
proper. 

Theorem 2: Suppose the following hold. 
(a) There are no proper, connected, and divergent 

[d(g»O] subdiagrams gCG such that all the masses in g 
are from the set {p,', ... "uS}. 

(b) Let G I be any subdiagram G'g; G, where G /G I de­
pends solely on masses from the set {p, I , ... ,p,s}. Suppose that 
for all such subdiagrams G I, we have the following. 

(i) If none ofthe connected components of G I are 
Go graphs (orG~ graphs) thend(G ' ) <d(G). 

(ii) If one or more the connected components of G I 

are Go graphs (or G ~ graphs), let G; denote the union 
of the connected components of G I involving no G~­
components, then 

O.;;;d(G) ifG; =0;d(G;) <d(G) ifG; ~0. 

If the above conditions (a) and (b) are true then (9) fol­
lows. 
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The above theorem is easy to apply as again it involves 
no computations, and it only requires a mere examination of 
the structure of the proper and connected graph G in ques­
tion. Examples will be given later. 

To prove Theorem 2, we need the following. Consider 
the elements in P,K,p, as the components I of a vector pi in 
R4m + 4" + p. Suppose pi is of the form 

, 
pi = I L;7J;1/;+ I ... 71, + C, 

;=1 

tE [I, ... ,(4m +4n +p)], (11) 

where L; , ... ,L; are t independent vectors in R4m + 4" + P, C is 
a vector confined to a finite region in R4m + 4" + P, and 
711> 1, .. ·,71, > 1 are some parameters. In reference to the 
graph G, we write QI = i + k 1 [see Eq. (5)], for the mo­
mentum QI carried by a line I in G. Suppose that for some I, 
k 1 depends on the parameter 7JT' for r fixed in [I, ... ,t]. Then 
we may writeR .. in (2) in a famiIiarform l,3: 

(12) 

where the sum is over all JV sets of proper, connected sub­
diagrams such that we have the following. 

(i) GEJV. 
(ii) If gl,g2E JV, then either glr'€2 = 0g2 or gl g;g2 or 

g2g;gl' 
(iii) LetgEJV. Ifgl, ... ,gm denote the maximal elements 

in JV contained in g: g; g;g, i = l, ... ,m, then define 
g = g/ (g lugp ... ugm ) by shrinking g I, ... ,gm in g to points. 
Then all the (k I)g (which are linear combinations of the 
integration variables in K) ofg are either all dependent on 71 T 
or are all independent of 7JT' 
Also (a) 61( = 1; (b) ifgg;GinJV, and all the (e)q ofg are 
independent of 7JT' then 6~ff' = 0; (c) if g is one of the maxi­
mal elements in JV contained in a subdiagram g' E JV, such 
that all (k I)g' ofg' are independent of7JT' and all the (k I)g of 
g are dependent on 7JT' then 6gY = 1; and (d) if gEJV 
(g g; G) is one of the maximal elements contained in g' E JV 
such that all the (k I)g' of g' are dependent on 7JT' then 6{ 
= O. If d(g) <0, then Tg=O, for the Taylor operation, by 

definition. 
We write 

JV=J¥'IUJ¥'2' (13) 

where gE J¥'I if all the (k I)g of g are dependent on 7JT' and 
gE J¥'2 if all the (k I)g of g are independent of 7JT' We also 
write 

J¥'I = Y luY2, (14) 

where for gE J¥' I, with g g; G, gE Y I if 6: = 0, and gE Y 2 if 
o{ = 1. Equation (12) may be then also rewritten as3 

R .. = IFG(JV), (15) 
.ff' 

where we have recursively 

Fg (JV) = (0: - Tg)/g II Fg,<JV), (16) 
i 

and {gJ; denotes the set of maximal elements in JV con­
tained in g: g; g;g. The maximal elements in JV contained in 
Gwill be denoted by GI, ... ,Gm : G; g;G. 
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To prove Theorem 2, consider a scale parameter 1/ A.;, 
and suppose that the latter is scaled by a parameter 1J, [see 
Eq. (11)]. Three possibilities may arise: either all ( [A] ) or 
some ([BD or none ([CD ofthek1in G depend on 1J,. We 
treat all cases. We use the notation 

u(g) = 4 '} L(f), 
Kt:1r. 
Keg 

(17) 

where L(g) denotes the number of independent loops in g. 
[A] Suppose Ge Y 2' then, according to (I), 

degr FG(ff)<d(G) - u(G), (18) 

where u( G) = 4L (G) = 4n. 
[B] Suppose GeK2, then, ford(G»O I, 

m 

degr(-TG)Ia ITFG,(ff)<d(G)-u(G), (19) 
71, ;= 1 

and no equality in ( 19) may arise. Let G ' be the subdiagram 
G ' in G such all the lines in G '1 ( G IU ... uG m ) depend on 1J r 

and GIG' is independent of1Jr' Then from (I) 
m 

degr Ia IT FG,(ff) 
'1,. ;=1 

m 

<d(G') -4L(6') - L u(G;) 
;=1 

{
=d(G')-U(G), ifL~')=O, 
<d(G') - u(G), if L(G') #0. 

IfG'=G, thenL(6') #0, and we have from (20) 
m 

degr Ia L FG,(ff) <d(G) - u(G), 
"I,. ;=1 

(20) 

(21) 

and no equality may hold in (21). Now consider the case 
G'~G 

(i) If none of the connected components of G' are Go 
graphs (or Go graphs), then from condition (b) (i) in 
Theorem 2, d(G') <d(G), and from (20), the inequality in 
(21) again holds true and no equality may arise in it. 

(ii) If G ' has one or more G 0 graphs as one or more of its 
connected components, then, without loss of generality, sup­
pose that G' has only one Go component, and write 
G' = Go uG ; , where none of the connected components of 
G; are Go graphs (or Go graphs). 
Let G? , ... ,G~be those elements in the set {G1, ... ,Gm } falling 
in Go: G?~Go, i= 1, ... ,t. Suppose all the external mo­
menta ofG? , ... ,G~ are independent of1J,. Then thesubtrac­
tion formalism guarantees3 that 

degr FGo(ff) <min [ d(G?), - 1] - u(G?), 
7/, ' 

i = 1, ... ,t. (22) 

Also all the 1J r dependence in Go 1 ( G ? u ... uG ~) will then 
come from the masses in the latter subdiagram, that is from 
(22) and (7): 

t t 

degr la' IT FGo(ff)< - 1 - L u(G?). (23) 
'1, 0 i= 1 j ;= 1 

On the other hand if some of the external momenta of one or 
more of the G? , ... ,G~ depend on 1J" then by momentum 
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conservation, the external momenta of Go depend on 1J r 
(that is we will be dealing with aGo graph rather than a Go 
graph). Hence from (20) and (10), the inequality in (23) 
again holds true. Therefore, if G; = 0, {G? , ... ,G~} 
={G1, .. ,Gm }, and d(G»O [see condition (b) (ii) in 
Theorem 2] we have from (23) that 

m 

degr Ia IT FG,(ff) <d(G) - u(G). 
fJ,. ;=1 

(24) 

If G; #0, then by definition G; contains no Go compo­
nents (or Go components) and hence from part (b) (i) in 
Theorem 2, d(G;) <d(G), that is 

r , 

degr la' IT FG,(ff) <d(G) - L u(G:), (25) 
"I,. 1 ;=1 i ;=1 

where G: , ... ,G! are the elements in {G1, ... ,Gm } falling in 
G ; . From (23) and (25), we then conclude that the inequa­
lity in (24) again holds true and no equality may arise in it. 

Hence for case [B], with Ge K 2, 

degr Fg(ff) <d(G) - u(G), (26) 
7/, 

and no equality may arise in (26). 
[ C] Suppose that all the k I in G are independent of 1J r' 

Then (ford(G»O) 

degr ( - TG) ... IG <d(G), (27) 
7/, 

where we have used (7) and (8). Also for G " ~ G, with G " 
proper and divergent, 

degr Ia ( - TG") ... IG" <d(G') - 4L(G'IG "), (28) 
7/, 

where GIG' (ifnotempty) is independent of1Jr. IfG'=G, 
then L(G IG") #0, and (27) and (28) imply that 

degr R <d(G). (29) 
7/, 

Suppose G ' ~ G. If G ' has no Go components as one or more 
of its connected components, then d (G ') < d (G), by condi­
tion (b) (i) in Theorem 2, and (29) holds true with no equa­
lity arising in it, as seen from (27) and (28). Otherwise sup­
posethatG' = GouG;, where, withoutlossofgenerality, we 
consider the case when G' has only one Go component. 
Then, according to condition (b) in Theorem 2, 

d(G') =d(G o) +d(G;)< -1 +d(G;) 

{
<d(G), ifG;#0, 

<d(G), ifd(G»O, G; =O, 
(30) 

where we have used the condition that if the external mo­
menta of Go are independent of 1J" then its masses must 
depend on 'TIr and hence (7); on the other hand if the exter­
nal momenta of Go depend on 1J" then we may use (10). 
Hence in case [C) no equality may arise in (29). 

According to (I) and the derived estimates in [A), [B), 
and [C) [see, in particular, Eqs. (31)-(39), and Eq. (10) in 
(I) ), we may bound the amplitudes in Minkowski space as 
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s (1 )d( G) + 4m - 2N 
X (AI "'As )d(Gl+4m-2N ill. Ai (31) 

or 

ITsl •...• Sk;Al •...• A, (f) I 
1 

<.C &'(lnsl, ... ,lnsk)-+O, 
SI "'Sk 

(32) 

for Sl>"',Sk-oo, AI, ... ,A.s-+O, where &' (In SI,.··,ln sd is 
some polynomial in In S I, ... ,ln S k, and no logarithmic 
growth occurs in (31) and (32) in the parameters lIAo 
i = 1, ... ,5; N is some large positive integer, and 1.2 

A 

lim T t7.~ ... Sk;Al •...• As (f) = TSl •...• Sk;Al •...• A, (f)· (33) 
£-+0 

This completes the proof of Theorem 2. 
As an example, consider the electron self-energy graph 

G in quantum electrodynamics, in any order, with photon 
self-energy insertions. We note (a) G contains no proper 
(connected and divergent) subdiagrams consisting solely of 
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a photon line, and (b) let Go be a photon self-energy graph 
insertion in G. Hence (10) is true, and any subdiagram G; 
g; G, not having a photon self-energy graph as one of its 
connected parts, such that G I (GouG ;) consists solely of 
photon lines is such that d ( G ; ) < d (G)( = 1). According­
ly, the conditions in (a) and (b) in Theorem 2 are true and 
hence (9) holds also true for the graph G when the electron 
mass m is scaled by a parameter S, and a photon mass f.J is 
scaled by a parameter A, and the limits S-oo, A-+O are tak­
en. As another example, consider the photon self-energy 
graph, to any order, with photon self-energy insertions. It is 
readily checked thatthe conditions (a) and (b) in Theorem 
2 are satisfied and hence (9) also holds true. 
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New covariant nonlinear spinor wave equations associated with nonlinear spinor representations 
of pseudo-orthogonal groups are derived. The wave equations obtained possess specific 
nonlinearities, which, in the intrinsic spinor coordinates, have the form of bilinear nonlinearities. 
Due to the existence of a large number of natural constraints, typical for nonlinear spinor 
representations, the number of independent spinor components in the present theory is 
considerably reduced. 

I. INTRODUCTION 

The most interesting supersymmetric l and superstring2 

field theories are currently constructed in a space-time of 10 
or 11 dimensions. However, many attractive features of 
higher-dimensional space-time field theories are diminished 
by the fact that in these cases the number of independent 
covariant spinor components is very high. 

We demonstrated in a previous work3 that in higher­
dimensional space-times there exists-besides the well­
known linear irreducible spinor representation-a specific 
nonlinear spinor representation for which the number of in­
dependent spinor components are restricted in a natural 
manner by quadratic covariant contraints. For instance, for 
the SO(v,v) pseudo-orthogonal groups the number of 
spinor components in the linear representation is 2,,-1, 
whereas the number of independent spinor components for 
the nonlinear representation is 1 + G): this gives, e.g., for 
v = 10, 512 spinor components for the linear representation, 
versus 46 for the nonlinear one. Hence the nonlinear spinors 
may form the natural minimal "building blocks" for field 
theories in higher-dimensional space-times.4 

In this work we consider the field theory associated with 
the nonlinear spinor representations of SO ( v, v) and 
SO ( v + 1, v). We show that the Dirac-like, covariant wave 
equation 

raaa l/J(x) =0, xeR"'v, or Rv+ ' .", (1.1) 

where r a are the generators of the corresponding Clifford 
algebra, reduces to a unique system of nonlinear field equa­
tions for independent spinor components with quadratic 
nonlinearities. Thus even the simplest theory with one 
spinor field, transforming according to a nonlinear spinor 
representation, represents a highly nontrivial specific non­
linear field theory. 

One can consider the resulting nonlinear field theory as 
a a-type model spinor field theory.s In fact the spinor l/J of, 

oJ Permanent address: Institute of Nuclear Studies, Nuclear Theory De­
partment 00-681 Warsaw, Hom 69, Poland. 

e.g., SO( v,v) satisfies a set of 2"-1 - 1 - G) quadratic 
constraints 

ipra, ... akl/J=O, fork=0,1, ... ,v-1, (1.2) 

where r a, ... ak are polyvectors generated by r a' Then Eq. 
(1.1) together with (1.2) represents in fact a spinor-type 
nonlinear a-model. 5 

In this work we concentrate on the derivation of nonlin­
ear spinor wave equations associated with (1.1) for the 
SO( v,v) and SO( v + 1,v) groups. In Sec. II, we give a de­
tailed analysis of the properties of these equations for the 
SO( v, v) and in Sec. III for the SO (v + 1, v) groups. In Sec. 
IV, we call attention to the interesting fact that the nonlinear 
spinor representation considered in this work represents one 
out of the whole set of nonlinear spinor representations asso­
ciated with a given linear spinor representation of the 
SO( p,q) group. We show that, choosing properly the stan-

k k 

dard pure spinors l/J with a stability group H, we obtain a 
k 

whole sequence of nonlinear spinor representations T, 
k 

whose carrier spaces N m will be isomorphic with the homo-

geneous spaces 
k k 

C =SO(p,q)/H. 

In this language the present nonlinear (pure spinor) 
representation of the SO(v,v) and SO(v + 1,v) group cor­

I 

responds to the stability subgroup H of 

1 0 
l/J= (1.3 ) 

o 
This nonlinear spinor represenation has the smallest dimen-

1 

sion, since the stability group H is the largest possible. All 

remaining nonlinear spinor representations will have dimen­
sion dk with 1 + G) <;dk < 2" . One can extend the present 
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theory to these nonlinear spinor representations and one gets 
the corresponding nonlinear wave equations. 

In Sec. V we summarize the obtained results and present 
some interesting research problems connected with coupling 
of nonlinear spinors with other fields and with a second 
quantization of spinor field theories associated with nonlin­
ear spinor representations. 

II. COVARIANT WAVE EQUATIONS FOR SO(v,v) PURE 
SPINORS 

The pseudo-orthogonal group SO( v,v) is most natural· 
ly realized in the Kl',l' pseudo-Euclidean space with a coordi­
nate system such that the metric tensor is given by 

a,b = 1, ... ,2v. 

However, as Cartan demonstrated,6 the analysis of spinor 
representations is most effectively carried out in an isotropic 
coordinate system obtained from the previous one by the 
transformation 

r = ~ II~: ~~J I· 
The coordinates corresponding tox = (xl' )ElRv,l' arel 

and/', 1,1' = 1, ... ,v, and the metric tensor has the form 

r,s = l, ... ,v,l', ... ,v'. (2.0 

Ifr a' a = 1, ... ,2v are basis elements of the Clifford alge-
bra 

{ra,rb } = 2gab 12l' , a,b = 1, ... ,2v, 

associated with the RV'V space, then the new basis for the 
Clifford algebra is given by 

HI = ~ (r 2/- 1 + r 21 ), HI' = ! (r 2/- 1 - r 21 ), 

1= 1, ... ,v, 
satisfying the relation 

{H"H.} = 2g,.12l' , r,s = 1, ... ,v,I', ... ,v'. (2.2) 

The semispinor tP from the carrier space L m+ of the irreduci­
ble linear representation ofSO( v,v) of dimension 2l'-l, cor· 
responding to the highest weight m+ = (!, ... ,!), can be rep­
resented as a column, where all components with an odd 
number of indices are zero, i.e., 

tP= 

1884 

tPo 
o 

o 

o 
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(2.3) 

As shown by Cartan,6 fPt. ... ;.,p, 1<p<[vI2], are totally 
antisymmetric in i l , ... ,i2P ' From Ref. 7, we have that tPi, ... i,p 
for 2<p< [ v12] are given in terms of tPo and tPi,i, by the for­
mula 

tPi, ... i,p = (2p -0!!tP6-PtP[i,i, ... tPi,p_,i,pl' (2.4) 

where we have introduced the notation for totally antisym­
metric tensors 

(2.5) 

with the summation extended over all permutations of the 
indices;l''''';' and ( - I)" denoting the signature of the giv­
en permutation. 

We now consider the covariant Dirac-like equation for 
the pure spinor tP(x) in the RV'V space 

r a ~ tP(x) = O. (2.6a) 
axa 

This equation looks like a linear equation in the components 
tPi ... i2 ' P = 0,1, ... , [vI2]; however, due to the constraints 

• p 

(2.4 ), it is equivalent to a specific set of nonlinear equations 
with quadratic nonlinearities. To show this, we pass to Car­
tan coordinates in which (2.5) has the form 

(2.6b) 

Thederivativesal =alal andal , =alal' satisfy the 
relations 

I' I al =!a , ai' =!a, 1= 1, ... ,v. 

We have the following proposition. 
Proposition 2.1: The Dirac equation(2.6) is equivalent 

to the following set of equations: 
v 

2qa[i,tPi,i, oo'iq l + L aiq+'tPi.oo.i./q+, =0, 
iq+ 1 = 1 

q = 1,3,5, ... ,2[ (v - 0/2] + 1. (2.7) 

(We make the convention tPi, 00. ip =0, for p > v.) 
Proof From Eqs. (2.8a) and (2.8b) of Ref. 3, we have 

(2.8) 

and 

q i.··· j •.• ; r = ~ (H",) i, ... i m qa m tPi, ... 'i ... i 
~ m q m q 

m=! 

= 2qa[. '/'.. . I' (2.9) '. '1"2'3 .. , 'q 

(A sign A over an index means that that particular index is 
missing from the sequence in which it appears.) Inserting 
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Eqs. (2.8) and (2.9) into Eq. (2.6b) we get Eq. (2.7). .. 
The first two cases, i.e., q = 1,3, are given explicitly by 

the following two equations: 

and 

v 

2 ai, "'0 + L a iZ"'i,iz = 0, 
i2 = 1 

v 

6 al · .1,. i J + '" a 1,.1'1 ... = o. 
" '1"" k 'I' ,'2','. 

i .. = 1 

(2.10) 

(2.11 ) 

We want to show now that the (;) equations (2.7) are 
redundant for q>5. In fact we have the following proposi­
tion. 

Proposition 2.2: IfEqs. (2.10) and (2.11) are satisfied, 
then for q> 5 all remaining equations (2.7) are automatically 
satisfied. 

Proof: The Dirac equation (2.7) for odd q can be written 
in the form 

(q) {6(ac .• 1 •.. ) + ~ (a. .1.[ ... iq + 1
)} .1.. . J 

3 'I ""'2 /3 iq+~= 1 lq+ I If' 11
1

:i!
'
3 ""'4···

l
q 

+ q(3 -q) {2(a .• 1, ) + ~ (a. .1 •. iq + 1)} 

2 
ir. % . £.., Iq+ I 'f"[ll 

lq+l = 1 

X "'i, ... i.l =0. (2.12) 

In fact, using Eq. (AI6), we have that 

at· .1.. . I 't 0/'2 ... lq 

= e- a12 {(q - 1) (ac' .1, .. ).1.. . 1 2 l,¥'1213 'f'c4 ""q 

+ + (3 - q)(a[i, "'O)"'i, ... i.]} , (2.13) 

while, using Eqs. (AI6), (AI), and (A2) we have that 

+ ~ q(3 - q)(aiH 1 "'Ii, i9 +I) "'I, '" I. J J . (2.14) 

AfterinsertionofEqs. (2.13) and (2.14) intoEq. (2.7) we 
obtainEq. (2.12). Looking atEq. (2.7) in the form given by 
Eq. (2.12) we see that, ifEqs. (2.10) and (2.11) are satis­
fied, then the expressions within the braces ofEq. (2.12) are 
identically zero, making Eq: (2.12) automatically satisfied 
in this way. .. 

We see therefore that the independent set of equations 
for a pure spinor field t{!(x) is given by Eqs.(2.10) and 
(2.11). Since by Eq. (2.4) 

(2.15) 

the set of equations (2.10) and (2.11) represents, in fact, a 
set of nonlinear equations for "'0 and "'I,>. with a highly non­
trivial nonpolynomial nonlinearity given by Eq. (2.15). 

We shall show now that, using the [1 + G)] spinor 
coordinates, we can reduce Eqs. (2.10) and (2.11) to a sys­
tem of nonlinear equations with quadratic nonlinearities. 
We recall that in the considered representation, the highest 
weight spinor "'mT for the highest weight m+ = (!,oo.,p can 
be written in the form 
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1 
o 

o 

(2.16) 

As follows from the Cartan theory, the space of all pure 
semispinors associated with m+ is given by the formula6 

tP=TgtPm., (2.17) 

where g-.Tg is the SOC v,v) spinor representation. We 
showed in Ref. 3 that "'m+ has the stability group 

H = SL(v,R)CxT('\ 

where T Gl is an Abelian group of dimension (~ ). According 
to the Mackey decomposition theorem,8 there exists a Borel 
set CCSO(v,v) such that any geSO(v,v) has the decompo­
sition 

g = ch, CEC, hEll. 

Then the pure spinor (2.17) can be written in the form 

'" = Tc1/Jm+ = !/J(c), 

i.e., the elements of the pure spinor space can be parame­
trized by the elements c of the set C. We have shown in Ref. 
3, the remarkable fact that in the case of the SOC v,v) group 
the set C can be identified-up to a set of Haar measure 

zero-with the group space T (2J Q.< T \ i.e., 

C = T<2>Q.<Tl. 

Hence the group parameters {Ck} ~::: ~2> may be considered as 
[ 1 + G)] intrinsic coordinates of the pure semispinor 
!/J(c). 

The action of Tgo on "'( c) is determined by the Mackey 
decomposition; in fact 

TI1o ",(c) = T ~"'".+ = ",(cgo<")' 

where the group element cgo<" is uniquely determined by the 
formula 

got = Cg"chf1oC' 

We see that if we represent!/J in terms Of{Ck}~::: ~2), the 
action ofSO( v,v) on !/J is nonlinear. 

It is shown in Ref. 7 that we can choose a parametriza­
tion of the group G such that it is expressed as a product of 
one-parameter subgroups, i.e., 

~ = [ IT eXP(CklQkl)] eaD, 
k<l= I 

where the Qkl are generators of T<2> and jj of Tl groups, 
respectively. Then the generic non-null component of "', 
with an even number 2p of indices, is given by7 

"' .. , ..... ,. = (2p - 1)!fe(Z/2cC"112 C1,,,, ... CI2P_II2p]! (2.18) 

Inserting (2.18) into (2.10) and (2.11), we get 

al,a + .f [a"'Ci,i> + J...CI,i, alza] = 0 
,z=1 2 

(2.19) 

and 
v 

2 au, Ci"i,) + I. (a I·C[I.12 )cI,II. = 0, (2.20) 
i .. = 1 

with i
"

i2';3 = 1,oo.,V. 
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It seems noteworthy that spinors that carry out a non­
linear spinor representation associated with the highest 
weight m+, satisfy-in intrinsic spinor coordinates-a spe­
cific system of nonlinear equations with quadratic nonlin­
earities. Thus nonlinear representations imply some specific 
nonlinear dynamics. 

Equations (2.19) and (2.20) were obtained indepen­
dently in Ref. 9 using the ChevalIey formalism. 

III. COVARIANT WAVE EQUATIONS FOR SO(v + 1,v) 
PURE SPINORS 

Following Cartan6 we pass from the orthonormal basis 
ofthe pseudo-Euclidean space RV+ I,v to the isotropic basis 
using the transformation 

o 0 1 

r' = !lv !lv 0 

!lv - !lv 0 

The new metric tensor i;,. has the form 

o 0 

{g;,.} = 0 0 !lv 

o !lv 0 

The new coordinates in RV+ I,v are denoted by yO,/, and/' 
and the corresponding basis of the Clifford algebra by Ho, 
H/> and HI" 1= 1, ... ,v. The relation connecting the two 
bases are the same as in the SOC v,v) case, plus 

yO = X2v + I and Ho = r 2v + I . 

The Dirac equation (2.5) iny-coordinates has the form 

[Ho~ + ± (HI ~ +H/, ~)] ¢(y) =0. (3.1) 
ayo 1= I aYI aYr 

The pure spinor ¢ from the carrier space L m of the irre­
ducible linear representation of SO(v + l,v) of dimension 
r, corresponding to the highest weight m = (~'''''~)' can be 
represented as a column 

t/J",- 1 'V 

The components ¢I .... Ir for r;;;.3 can be expressed in 
terms of ¢o, tPl. ' and ¢1.12 by the formulas6

,7 

.1. . = (2:p - 1) 11.1'01 - P.I.[ . . • 1... • .. • 1.. . 1 (3.2a) 'Yil .0. J2p • 'f/I 'f' '1'2 tr131. 'f'12p_ l'Zp 

I 

and 

¢1 .... I2p+l = (2p+ 1)IItPO- P¢[i1tPI,13 ·"¢I>pi.2p+d' (3.2b) 

We have the following proposition. 
Proposition 3.1: The Dirac equation (3.1), written for 

the spinor components, has the form 

aO¢I, ... Ir - 2r aUl ¢1
2 

••• ir 1 
v 

+ L alr+l¢lr+ll''''lr=O, r=0,1,2, ... ,v. (3.3) 
;,+1= 1 

Proof From Eqs. (2.8a)-(2.8c) of Ref. 3, we have 

(Hoao¢)I, ... ir = (-I)'ao ¢i, ... lr' (3.4) 
v 

L (HI al¢)i, ... lr 
1=1 

and 
v 

v 

=(-1)' L alr+l¢ir+ll, ... lr' 
i,+J = 1 

L (HI' al'¢)I .... ir 
1=1 

, -- L (H) I .... 1m ••• Ir a 1:'.1. _ 
- I' ; •... ; '1'/., .. ; .•. ; m' In , 

m=1 
, 

= L (-1),-m2alon ¢I ... ·/on .. ·lr 
m=1 

(3.5) 

= (-I)'+12ra[11tPl, ... irl' (3.6) 

Inserting Eqs. (3.4) and (3.6) into Eq. (3.1) we obtain Eq. 
(3.3). ~ 

The first r = 0,1,2,3 cases are given explicitly by the fol­
lowing equations: 

v 

ao¢o + L a I'¢I, = 0, (3.7) 
i,= 1 

(3.8) 

(3.9) 

(3.10) 

We show now that all equations in (3.3) for r> 5 follow from 
Eqs. (3.7)-(3.10). In fact, we have the following proposi­
tion. 

Proposition 3.2: If the spinor components satisfy Eqs. 
(3.7)-(3.10), then they automatically satisfy all Eqs. (3.3) 
for any r. 

Proof For r = q odd the Dirac equation (3.3) for the 
pure spinor components can be written as 

2
1 q(3-q) {(aO¢[i.>-2(a[i,¢0) -. i (al9+1¢[i,iq+l)}¢i2 ... iql 

Iq+1 = 1 

+ {( ao·I.[ ... )-6(a[ .• I ... ) - ~ (a .• 1.[ ... iq+1)}.I .. '1=0 'Y '1'2'3 "IfI,2,) . ~ Iq+ 1 'f' '1'2') 'f/14 .0. 'q , 

'q+ I = I 

(3.11 ) 
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while for r = p even, it can be written as 

( 1- P2) {ao"'o+ . i_ (aip+l",iP+I)} "'I, ... ip - 21 p(p-2) {aO"'[i, -2a[i,"'0- . i (aip+I"'[i,lp+I)}"'i, ... ip] 
~+I-I ~+I=I 

(3.12) 

In fact from Eqs. (A6)-(AS), using Eqs. (A2), (3.7), and (3.9), we have that 

aO"'i, ... i. = e - a/2 {! q (3 - q)( aO"'[i,) "'i, ... i.] + (~) (aO"'[i,i,i,) "'i •... i.]} , 

while from Eq. (AI6), we have that 

(3.13) 

qa[il"'i2 ••• iq ] =e- aI2 [(i) 3 (a[i, "'i,i'>"'i •... iq ] + ~ q(3 -q) (a[i, "'O)"'i, ... i.]] . (3.14) 

After insertion of Eqs. (3.13), (3.14), and (2.14) into Eq. (3.3) for r=q (odd), the first part of Proposition 3.2 is 
proved. 

Let us pass to the case r = p even. From Eq. (AI6), we have that 

aO"'i, ... ip =e-
a12 [(~) (aO"'[ili'>"'i, ... ip ] + (1- ~) (aO"'O)"'il ... ip ]' (3.15) 

while from Eqs. (A6), (A7), and (AS), we have that 

au, "'i, ... Ip] = e - a/2 { (p - 1) (au, "'I, )"'i, ... ip ] + (p; 1) (au, "'I,i, ) "'i •... ip ] + (1 - ~) (au, "'0)"'1, ... ip ]} • 

Finally from Eqs. (All), (A2), (AI6), (A6), (A7), (AI7), and (AI4), we have that 

(3.16) 

AfterinsertionofEqs. (3.15)-(3.17) intoEq. (3.3) for 
r = p (even) and taking into account the relation (A IS ) 
also, Eqs. (3.11) and (3.12) are obtained. 

Looking at Eq. (3.3) in the form given by Eqs. (3.11) 
and (3.12), we see that, ifEqs. (3.7)-(3.10) are satisfied, 
then the expressions within the braces of Eqs. (3.11) and 
(3.12) are identically zero, making Eq. (3.3) automatically 
satisfied. T 

We see, therefore, that Eqs. (3.7)-(3.10) form a set of 
basic equations for the spinor ",. Inserting Eqs. (3.2a) and 
(3.2b) for "'ili,i, and "'I,I,i,i

4 
into (3.9) and (3.10), respective­

ly, we see that the set (3.7)-(3.10) represents for the inde­
pendent components "'0' "'i, ' and "'i,i, a system of nonlinear 
equations with nonpolynomial nonlinearities. 

We show now that, passing to the intrinsic spinor com-
1+ (v+ I) 

ponents, determined by the coordinates {ckh= I 2 of the 
Mackey set C, we reduce the Eqs. (3.7)-(3.10) to a system 
of equations with quadratic nonlinearities. We note first that 
the highest weight spinor "'m, corresponding to the highest 
weight m = (!, ... ,!) of the SOC v + l,v) spinor representa­
tion, still has the form (2.16). We have shown in Ref. 3 that 
the stability group H of "'m has the form 

H = SL(v,R)&R, 

1887 J. Math. Phys., Vol. 27, No.7, July 1986 

(3.17) 

where R is a solvable Lie group whose Lie algebra r has the 
form 

r=t!2)+d v, 

with t <2> a G) -dimensional Abelian algebra and d v a v­
dimensional vector space in the soC v + 1, v) Lie algebra. The 
corresponding set C coincides-up to a set of Haar measure 
zero-with the group space 

C=R'&R, (3.1S) 

where R is a solvable Lie group whose Lie algebra r has the 
following structure: 

(3.19) 

with t <2> a G)-dimensional Abelian Lie algebra and; a v­
dimensional vector space in the soC v + 1, v) Lie algebra. We 
see that now the structure of the set C is much richer than in 
the SO(v,v) case. 

Since g = ch, ceC, heH, then the arbitrary pure spinor '" 
in the carrier space of the nonlinear representation can be 
written in the form 

(3.20) 

Consequently the group parameters of C may be considered 
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as the intrinsic components of 1/1. We have shown in Ref. 7 
that ifP and Qn are generators of one-parameter subgroups 

in the space t <2> and r, respectively, then for 
X = gk pc + d,.. Qn in r, the representation Tc = ex can be 
written in the form 

ex = LUI exp(gkpk) ] Lit exp(d"Q") ] e"D. (3.21) 

Then the components of 1/1 with an even number p of indices 
are given by 7 

.1 •. . = (p-1)!!eaI2d[ .. d .. ···d· 'J' (3.22) 
'f'11""p '.'2 '3'. Ip_I'p 

while those ones with an odd number q of indices are given 
by7 

(3.23 ) 

where 

dij: = dij + E(j - i)gl gj" (3.24) 

Inserting formulas (3.22)-(3.24) into Eqs. (3.7)-(3.10), 
we find that the Dirac equation for the pure spinor 1/I(y) 
transforms into the following set of nonlinear equations for 
the intrinsic spinor coordinates a (y), gl (y), and djk (y): 

I ~ (I . .) -acfX-.k -gi, a"a+a"gl, 
2 '1=1 2 

=0, (3.25) 

=0, (3.26) 

(3.27) 

v 

+ L (al'd[i,l, )dI3 ]1
4 

= O. (3.28) 
;4= 1 

We see that in intrinsic spinor coordinates, provided by 
the group parameters of the C group, the Dirac equation 
(2.5) represents a system of specific nonlinear first-order 
equations with quadratic nonlinearities. Due to the more 
complex structure of the Cspace, the system (3.25)-(3.28) 
of nonlinear equations is also much more complicated than 
the corresponding system (2.19) and (2.20) for the SO(v,v) 
case. 

IV. PARTIALLY PURE SPINORS 

The theory presented in Sees. II and III concerns the 
nonlinear wave equations associated with pure spinors of 
SO(v,v) and SO(v + l,v) groups. We would like to call at­
tention to a rather interesting fact that the pure spinor repre­
sentation of the given rotation group represents one out of, in 
general, many nonlinear spinor representations. Consider 
the case of the SO ( v + 1, v) groups. In this case the carrier 
spinor space L m of the linear spinor representation is 
spanned by the spinors 
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1/10 

1/111 

1/1= (4.1 ) 

t/Ji1i2 

and has dimension d", = 2 v. In the case of the pure spinor 
1/Ip the components 1/111 ... Ip are determined by the 1/10' 1/11

" 
and 

1/11,1, components, in particular by Eq. (3.2), 

{

(v - 1)!!1/I~ -v/21/1[121/134 .. ·1/IV-Iv)' 

for v even, 
1/112 ... v = vll.1.< I - v)/2.1. .1. .. • • 1. 

'f'0 'f'[1 'f'23 'f'v- Iv]' 

for v odd 

must be zero for any pure spinor having all 1/11,,1, components 
I 

zero, like the standard pure spinor 1/1 m given by Eq. (1.3). 

Hence the spinor 

2 
.1 • • _ 
'I'm- -

1 

o 

o 
1 

(4.2) 

is certaintly not pure. Consequently the nonlinear spinor 
2 

representation determined by 1/1 m' according to the construc-

tion given in Sec. III will be different from that associated 
I 

with the pure spinor 1/Im. In order to find this representation 
2 2 

one has to determine the stability group H of 1/Im and the 
2 2 

Mackey set C =SO(v+ l,v)/H. We have the following 

theorem. 
Theorem 4.1: Let m = (!, ... ,!) be the highest weight of 

the irreducible linear spinor representation of the 
2 

SO(v+ l,v) group with v>5. Then the stability groupH of 
2 

1/Im is the group SL( v,R) spanned by the (v - 1) genera-

tors 

Ilkl 1 [H,H 8kl ~ 1 
= - -2 k I'] + - k -2 [Hm ,Hm' ] , 

V m=1 

k,/ = l, ... ,v. (4.3) 

Proof: (See Appendix B. ) 
Remark: Contrary to the pure case, here the set of gener­

ators in so ( v + I, v), complementary to the stability set 
{Ilk/

}, do not form an algebra. 
I 

Notice that in the case of the standard pure spinor 1/Im 
the stability group was the group 

I 

H =R<1<SL(v,R), 

where R is a solvable group whose Lie algebra r has the 
following structure3

: 
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r = t Cl> -i- d ", 

with t (1) a (2 ) -dimensional Abelian Lie algebra and d" a 'V­

dimensional vector space in the so( v + l,v) Lie algebra. We 
2 

see therefore that H coincides with the maximal simple sub-
1 

groupofH. 
2 2 

The Mackey set C = SO(v + I,v)/H has the dimen-

sion d 2 = 1 + 2v + 2G), which is much larger than the di­
e 

1 

mension d I = 1 + v + G» of C in the pure spinor case. It 
e 

1 

follows from the form of tPm that the pure spinor is distin-

guished by the fact that the dimension of the associated non­
linear spinor representation is the highest one. 

2 

As previously, the carrier space Nm of the nonlinear 
2 

spinor representation associated with tPm coincides with the 
2 

manifold C, i.e., 

2 2 2 

tP(C) = TctPm, ceC. 
2 2 

The nonlinear representation T acts in N m according to 

the formula 
222 

T g"tP(C) =tP(cg.,c)' 
3 

It is clear that, taking another standard spinor tP m with a 

larger-than-2 number of nonvanishing components, one ob-
3 

tains in general a still smaller stability group H and a larger 
3 3 

carrier space N m - C of the nonlinear spinor representation 
3 

T of SO(v + I,v). In that manner, determining a finite 
i i 

number n of all nonequivalent stability subgroups H of tP m' 

j 

one finds all possible nonlinear spinor representations T, 

i = I,2, ... ,n, associated with a given linear irreducible spinor 
representation. The dimensions dj of these nonlinear repre­
sentations will satisfy the inequalities 

1 + v + (l)<d2<d3< ... <dm <2". 

We shall call the corresponding nonlinear spinors "par­
tially pure spinors." They represent a natural extension of 
the original Cartan pure spinor and they have a rich geomet­
ric, topological, and group theoretic structure. 10 The theory 
of nonlinear spinor wave equations associated with partially 
pure spinors will be presented elsewhere. 11 

V. DISCUSSION 

nonlinear covariant spinor wave equations with a specific 
type of bilinear nonlinearity. The obtained models of spinor 
field theory resemble the (T models of boson field theories 
based on homogeneous spaces of the rotation group. S The 
Lagrangian formalism and the corresponding conservation 
laws of the obtained nonlinear spinor field theory are consid­
ered in Ref. 11. We stress that the resulting spinor field the­
ory-due to a large number of bilinear constraints---con­
tains an absolutely minimal number of independent spinor 
field components: for instance in the case of the SO( v + 1, v) 
groups for v = 10, instead of 1024 independent spinor com­
ponents in the linear representation, we have only 56 in the 
nonlinear one. 

(2) The covariant form (2.6a) of the spinor wave equa­
tion is very convenient for coupling the spinor field tP with 
other fields, e.g., gauge fields A! connected with a gauge 
group G. In fact in this case the coupled covariant wave 
equation will have the form 

(5.1 ) 

where 

with a = I, ... ,2v (or 2v + 1) and m,n,r = I, ... ,dim G. 
The analysis of the COJ1pling of pure spinor fields with 

gauge fields may clarify the physical meaning of constrained 
spinor field theories. 

( 3) A systematic program of a quantization of a field 
theory with field values on homogeneous spaces has been 
considered in Refs. 12 and 13. This theory can be applied in 
our case and will provide a specific model of nonlinear spinor 
field theory with bilinear constraints. It is interesting that a 
model of spinor field theory with bilinear spinor constraints 
appears in the strong coupling limit of boson-fermion field 
theories. 
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APPENDIX A: LEMMAS NEEDED IN THE PROOFS OF 
PROPOSITIONS 2.2 and 3.2 

We collect here a series of results of technical nature. 
Lemma 1: For p even we have 

(AI) 

We conclude this work with the following remarks. and 
( 1) It is remarkable that, with every nonlinear pure 

spinor representation of a rotation group, one can associate tPOtPl, ... I, = (p - I) tP[I,l, tPj, ... j,)' (A2) 
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Proof: From Ref. 6 we have that 

I 
= - {( 'hi, - rfi,l, ) rfl,I.,,,.,ip + 

P 

while, using definition (2.5) again, 

I 
= -, {( rfl,i, - rfi,i, )( rfi, ... i + perm) p. p 

(A3) 

+ ... + (rfip_1ip -rfipiP_l)(rfi, ... ip_
2 
+ perm)} 

I 
p(p-l) {(rfi,i, -rfl,i,)rfi""ip 

+ ... + (rfip_1ip - rfipiP_l )rfi, ... ip_)' (A5) 

Comparing Eqs.(A4) and (A5), Eq. (A2) is proved. " 
Lemma 2: For q odd we have 

(A6) 

rfOrfi, ... i. =qrf[i1i2rfi, ... io]' (A7) 

rfOrfl, ... i. =W(q-2)rf[ll~i3rfi""io]" (AS) 

Proof: From Ref. 6 we have that 
q 

rfOrfi""lo = L (_l)m-lrfimrfi, ... im·"io' (A9) 
m=) 

which, using the definition (2.6), gives Eq. (A6). From Eqs. 
(A6) and (A2) we have 

rfo rfl, ... io 

= qrfOrf[ll rfl, ... io ] 

= q(q - 2)rf[i1 rfi,i, rfi • ... io] 

= qrfOrf[i1i,. rfl' ... 1.] 

= q(q - 2 HrfOrf[il l113 rfl • ... io]' 

proving both Eq. (A7) and (AS). 
Lemma 3: For q odd we have 

(AlO) 

which, afterinsertionofthedefinition (2.6), givesEq. (AI). 
In order to demonstrate Eq. (A2), let us write Eq. (2.4) 

explicitly, using definition (2.5) 

(A4) 

Proof: Applying Eqs. (AI) and (A2), we have 

rfo .,pll .,. iq + I 

= qrforf[i, ... i
O

- 1 rfioJiq+ 1 

= q(q - 2)rf[i1i2 rfl, ... i.-I rfio]iq+ 1 

= W(q - 2)rforf[i,'" iO - 3 rflq-2iq-lloJlq+ I' 

and the lemma is proved. " 
Lemma 4: For p even we have 

rfOrfi, ... ip+ 1 = Prf[ll rfi, ... lp]lp+ 1 + rfl, ... Ip rflp+ I' (All) 

rfOrfi, ... Ip+ 1 = Prf[i, ... lp_1 rflp]ip+ 1 + rfi, ... Ip rflp+ I' (AI2) 

rforfi, ... ip+ 1 = (p - I )rf[l,i, rfl, ... lp]lp+ 1 

(AI3) 

rfOrfi, ... Ip+ 1 = (p - I ){rf[i, ... ip_ 2 rfip_1ip]ip+ 1 

+!( p - 2)rf[i, ... ip_3 rfip_lip_llp]lp+ I}' 

(AI4) 

Proof: From Eq. (A6) and definition (2.6) we have 

andEq. (All) is proved. UsingnowEq. (Al) and (A6) we 
may write 

rforf(i, rfi' ... ip]ip+ 1 = (p - I )rf[I, rfi' ... ip_ 1 rfip]lp+ 1 

(AI5) 

InsertingEq. (AIS) intoEq. (All) wegetEq. (AI2). Then 
from Eq. (A7) and definition (2.6) we have 

rfOrfi, ... iip+ 1 = (lip!) q (rfi,i, rfi' ... iip+ I + permU), ... ,ip ») - (rfi,i, rfi, '" ip_Iip+ lip + perm(i), ... ,ip ») 

- ••• -(rfi,i,rfip+ li4 "'ii. +permU), ... ,ip»] - [(rfi,ip+lrfi""ii' +permU), ... ,ip ») 

+ (rfip+ Ii, rfi, ... ipi, + perm (i), ... ,ip »)]} 

= (p - 1) ."[' .• ". . ] . - 2·"[' . .". . I If' ','2 'f'13 ••• 'p lp+ I If' 'I'p+ 1 '1"'2 .•. 'p 
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(with ip + I not antisymmetrized), and Eq. (A13) is proved. Finally, by repeated use ofEqs. (A13), (A2), and (A7) we have 

7/107/11, ... Ip
1p + I = [( p - 1) ( p - 3 )/3] 7/1[1,1,1,1. 7/11 • ... Ip 1 Ip+ I - 47/1[1, Ip+ 17/11, ... Ip 1 

_ ( 1 ).1. .1. Ip+ I _ ( _ 2).1. Ip+ 1./. - P - 'f'[I, ... lp_2 'f'lp_llpl P 'f'[I, 'f'I, ... lpl 

and Eq. (A14) also is proved. 
Lemma 5: For P even we have 

7/loiJ
a
7/lI, ... lp = (~) ca a

7/lU,I,)7/lI""lpl + (1- ~) (aa7/l0)7/lI""lp' (A16) 

Proof: From Eqs. (A2) and (2.4) we have, acting recursively with the derivative, 

aa(7/l07/lI""lp) = (p -1){(aa7/l[i11)7/lI, ... lpl + 7/l0-17/I[I,I,aa(7/l07/lI""lp) - (aa7/l0)7/lI""I) 

= ... = [( P - 2)/2]( P - 1) (a a7/l[I I )7/11 ... 1 1 + (p - 1 )1I7/1~ -p/27/1[jj 7/ljj ... 7/11 I a a( 7/107/11 I I) 
12 3 P 12 34 p-3p-2 p_lp 

- [( P - 2)/2](a a7/l0) 7/11, .. , Ip = (~)(a a7/l[I,I) 7/11, ... Ip 1 + (2 - ~) (a a7/l0) 7/11, ... Ip' 

and the lemma is proved. 
Lemma 6: For q odd we have 

7/loiJ a7/ll, ... I. 

= q(aa7/l[11 )7/1/, ... 1.1 + (~)(aa7/l[1112)7/lI""lol 
+ ~(1 - q)(aa7/l0)7/lI, ... I. 

Proof: Using Eqs. (A6) and (A16) we have 

a a (7/107/11, ... I. ) 

(A17) 

= q(aa7/l[11 )7/1/, ... 1.1 + q(Q:;I)7/lo-l(aa7/l[111)7/lI,7/lI •... 1.1 

+ !(3 - q)(aa7/l0)7/lI, ... 1 .. 

Then, taking into account Eq. (A6), the lemma is proved ..... 
Lemma 7: For p even the following identity holds: 

~ pep - 2)(aa7/l[i1 )7/lI""lpl= (;) (aa7/l[1112IJ)7/l14 ... Ip)' 

(A1S) 

Proof: From Eq. (A6) and (AS) we have 

- !p( p - 2)(aa7/l[i1 )7/11, ... Ipl 

+ (~)(a a7/l[11121J )7/114 ", Ip 1 

= (~ ) (p - 3 )7/10- I [a a( 7/lU,I,I, 7/11.) ] 7/11 •... Ip}=O. 

In fact from Eq. (A6) we have that 

.1.[. . . .1.. 1 = 3.1'0- 1.,.[. . .1.. .1.. 1 =0 
If' '.'2'3 ""'. .,." ' .,., 't'2 ""'3 ""'4 - , 

and then the lemma is proved. 

APPENDIX B: PROOF OF THEOREM 4.1 

Let us analyze the elements of the first and the last col­
umn of the matrices 

HHp,H,,], p,O" = O,l, ... ,v,l', ... ,v', (B1) 

making use of the Eqs. (2.Sa)-(2.8c) of Ref. 3. 
Then we have for the first column's elements 

(HHj,HO])I, ... l
p

O= (HHj,H/])I, ... lpO=O, (B2a) 
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and 

(H Hj,Ho] )1, ... Ip 
0 = ~pI ~I,j' 

(HH/,H" ])I, ... lp 
0 

= ~P2 (~I,/~I,j - ~1,j~t,/)' 

(H Hj,H,. ])1, ... Ip 0 = ~pO!~jl' 

For the last column we have 

(B2b) 

(B2c) 

(B2d) 

(~[ H/,Ho] )1, ... Ip I .. ·" = (![H/,H,,] )/''''/p I· .. " = 0, 
(B3a) 

while for the remaining ones the only non-null elements are 
given by 

(HHj,Ho])I ... j ... " I ... " = ( -1)j, (B3b) 

( l[H U]). 1···,,_ (-l)j+I+1 (/_') 2 j ... .101 1 ... j ... 1 •.• " - € J, 
(B3c) 

(H Hj,H" ]) I ... " I .. ·" = - ~~jl' (B3d) 

SummingupEqs. (B2a)-(B3d), we have the following: 

HHj,Ho] gives no contribution in the first column and a 
contribution ( - 1 Y in the (1 ... J ... v)th row of 
the last column; 

HH, ,Ho] gives a contribution 1 in thejth row of the first 
column and no contribution in the last column; 

~[Hj,H/] gives no contribution in the first column and a 
contribution ( - 1 Y + I + I €(l - j) in the 
(1 ... J ... 1 ... v)th row of the last column; 

HH/ ,H,,] gives a contribution €(j -I) in the (j/)throwof 
the first column and no contribution in the last 
column; 

HHj,H,.] forj¥=1 gives no contribution either in the first or 
in the last column; 

i [Hj~.] gives a contribution i in the Oth row of the first 
column and a contribution (-!) in the 
(1 ... v)th row ofthe last column. 

If we now go to the explicit realization of the 
so(v+1,v) Lie algebra given by Eqs. (A2c), (A2d), 
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(A3c), (A3g), (C2),and (C3c) (forh = v), weseethatthe 
2 

stability algebra of the spinor f/lm , given by Eq. (4.2), is pro-

vided by the v(v-l} generators HJl,..H/,] with 
j#1 = 1, ... ,v, plus v-I differences of generators HJl,..H, ], 
j = 1, ... ,v, i.e., by the (v - 1) generators rrk

/ given by Eq. 
(4.3). T 

ISee, e.g., M. Sohnius, "Introducing supersymmetry," Phys. Rep. 128, 39 
(1985). 

2See, e.g., J. H. Schwarz, "Lectures on superstring theory," preprint No. 
CALT-68-1247, 1985. 

3p. Furlan and R. ~czka, "Nonlinear spinor representations," J. Math. 
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The set of all matrix-valued first-order differential operators that commute with the Dirac 
equation in n-dimensional complex Euclidean space is computed. In four dimensions it is shown 
that all matrix-valued second-order differential operators that commute with the Dirac operator 
in four dimensions are obtained as products of first-order operators that commute with the Dirac 
operator. Finally some additional coordinate systems for which the Dirac equation in Minkowski 
space can be solved by separation of variables are presented. These new systems are comparable to 
the separation in oblate spheroidal coordinates discussed by Chandrasekhar [So Chandrasekhar, 
The Mathematical Theory a/Black Holes (Oxford V.P., Oxford, 1983)]. 

I. INTRODUCTION 

A complete theory of separation of variables for the 
nonscalar equations of mathematical physics has yet to be 
developed. Some partial results have been obtained for the 
Dirac equation, the Proca equation, and the Pauli-Fierz 
equation. I-3 More recently there has been renewed interest 
in the separability properties of the equations for first-order 
perturbations of spin fields in a gravitational background. In 
particular Teukolsky4 has shown that for massless fields of 
spin-O, -!, and -1, a form of separable solution does exist for 
perturbations in a Kerr metric gravitational background. 
Chandrasekhar has shown that the Dirac equation also ad­
mits a separable solution in such a background. These results 
have been extended by several authors6

•
7 and shown to hold 

for more general classes of type D vacuum metrics. More 
recently the constant of the motion associated with the sepa­
ration of variables for the Dirac equation (the other two 
constants are associated with geometrical symmetries) has 
been characterized.8-IO It is found that the additional con­
stant of the motion is a matrix first-order differential opera­
tor that commutes with the Dirac Hamiltonian. This opera­
tor is associated with the generalized Killing tensors ofYano 
and Bochner. II Furthermore McLenaghan and Spindel9 

have established the general form of a matrix first-order op­
erator that commutes with the Dirac Hamiltonian. An inter­
esting feature of Chandrasekhar's work is that it also implies 
that the Dirac equation in Minkowski space admits a separa­
ble solution in oblate spheroidal coordinates. We should 
mention in this connection the work of Cook 12 on separation 
of variables for the Dirac equation. These results inject new 
life into the possibility of classifying all separable coordinate 
systems and solutions for the Dirac equation. To this end in 
Sec. II we compute the matrix operators which commute 
with the Dirac Hamiltonian in complex Euclidean n-space. 
We then study the first- and second-order matrix symme­
tries of the Dirac equation in four dimensions in Sec. III 
culminating in Theorem I. Finally, in Sec. IV we present 
several examples of separable solutions (of the Dirac equa-

tion) in four-dimensional Minkowski space and give their 
operator characterization. 

II. FIRST-ORDER CONSTANTS OF THE MOTION FOR 
THE DIRAC HAMILTONIAN IN En 

In complex Euclidean n-space En Cartesian coordinates 
will be denoted by Z;, i = 1, ... ,n, and the associated infinitesi­
mal distance is 

dr=dz; dz;. (2.1 ) 

In this section repeated subscripts imply summation; we 
only use SUbscripts and work exclusively in Cartesian co­
ordinates. Furthermore we will take the dimension to be 
n = 2v, i.e., even. Then, as is well known, 13 there is a unique 
representation of the Clifford algebra of dimension 2v by 
2v X 2v matrices ri' which satisfy the anticommutation rules 
({ , } is the anticommutator bracket) 

{rilrj} = rirj + rjri = 2In~;j' 
The associated Dirac Hamiltonian is 

(2.2) 

(2.3) 

Clearly the results of significance in this section are to be 
obtained by considering various real forms of complex Eu­
clidean n-space. The resulting '1', which is a solution of 
H'I' = 0, could then be interpreted as the solution of an ap­
propriate wave equation in a physical theory realized in di­
mension n. The other advantage of working in complex Eu­
clidean n-space is that a large number of different cases for 
operators of a given type correspond to a single class in this 
case. The classification problem is thus made considerably 
simpler. 

We now search for operators L = Fa a a + G, which 
commute with H: 

[H,L] = 0. (2.4) 

Equating to zero the coefficients of the derivatives in this 
condition we obtain 
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[Ya,Fb] + [Yb,Fa] =0, 

[G,Ya] = (Y; a;)Fa, 

(Y; a;)G= O. 

(2.5a) 

(2.5b) 

(2.5c) 

In addition to the Y; matrices we define Y2v +. = cu = (11 
(2v)!) E;"";2v Y;, ••. Y;2.· (Here E;"";2. is the usual antisym­
metric tensor.) This matrix satisfies 

{cu,Y) = 0 j = 1, ... ,2v. (2.6) 

A suitable basis· 3 for the space of2vX2v matrices is then 

Ya •.. Ya , P = 1, ... ,v, , 2p 

CUYa ••. Ya , P = 1, ... ,v. 
I lp-I 

(2.7) 

where a; <aj ifi<j. We write 

Fa = .Fa! + 3Faa,a2 Ya, Ya2 + ... 
+ 2v+ .Faa, ... a2.Ya, ••. Ya2. 

+ 2Faa, cuYa, + ... + 2vFaa, ... a2._' cuYal ... Ya2v_ I' 
(2.8) 

where we take pFaa, ... ap_,=pFa[a, ... ap_J]' The square 
bracket denotes complete antisymmetrization. The condi­
tions (2.5a) then imply 

pFao ", ap _, =pF[ao ... ap_,)' (2.9) 

In particular 

The conditions (2.5b) then imply 

[1/p!]P, , [a, (pF, , )] ao···ap_l ao ao,o··ap_1 

+ ac (p+ 2Facao ... ap_,) + 2(p+ 2Gaao ... ap_,) = 0, 
(2.10) 

where round brackets denote symmetrization, the first sum­
mation is over all permutations a~ .,. a; _. of the fixed set 
ao,···,ap_.' and Pao"'a;_1 is the sign of this permutation. 

From these equations we can deduce that 

ab (pFaa, ... ap_,) + aa (pFba, ... ap_,) = 0, (2.11) 

i.e., each pFa, ... ap function is a generalized Killing-Yano ten-
sorY In particular, aa C = 0 and ab (IFa) + aa (IFb) = O. 
This last condition is just the statement that the lFa are the 
components of a Killing vector. The remaining conditions 
are, in fact, redundant, since, for any general Killing-Yano 
tensorll pFa, ... ap' we have that 

aa ab(pFa, ... ap) =0. (2.12) 

We thus see that the space of operators L is determined by 
the Killing-Yano tensors pFa, ... ap and p+. Gao "' ap + I via 
(2.10) 

The general solution of the Killing-Yano equations 
(2.11) is known 11 to be 

pFa, ... ap (z l,· .• ,zn ) = AZ;E;a, ... ap + BEa, ... ap 

and the corresponding solutions for 

p+2Gaal ... ap =!p aa (pFa, ... ap) 

=A!PEaa, ... ap 

A basis for the space {L} consists of 
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(2.13 ) 

(2.14) 

L 2q = [1I(2q)!]P 'b" ,Z 0 ab, Y, ... Y, 
a al ••• Q2q a a 1 QZq 

+qYaYbYal "'Ya'q' q=O,l, ... ,v, (2.15) 

L 2q _ 1 = (11(2q - l)!]Pa'bo 0 a' z, abO cuy, ... Yo 
QI"'2q-t Q al a2q_1 

+ (q-!)CUYaYbYal "'Ya,q_I' q= 1, ... ,v, 
(2.16) 

M2q = [1I(2q)!]Pb" 0 abO yo··· Yo, q = O,I, ... ,v, 
al ••• QZq a, a 2q 

(2.17) 

M 2q _. = [1I(2q - l)!]Pbo 0 , abO cuy, .. , Yo, 
Q,···a2q_1 a l QZq-1 

(2.18 ) 

where the summations extend over a fixed set of indices 
(e.g., a, b, a1, ... ,a2q in the case of L 2q ). This basis has a 
particular significance, which we can see as follows: consider 
operators of the type MI' From (2.17) and (2.18) we have 

(2.19) 

i.e., Mi is the second-order Casimir invariant for the sub­
group EI + 1 , whose Lie algebra has the basis 

PA =aA , 

MAp. =ZA ap' -Zp. aA +~YAYp.' 

A,fl = b,a1,···,a l , A =fp. (2.20) 

A similar result holds for the operators L I; from (2.15) and 
(2.16) it follows that 

(2.21 ) 

i.e., to within a constant L i is the Casimir invariant for the 
subgroup SO(l + 1), whose Lie algebra has a basis 

MAp.' A,fl = 1,b,a1,···,al , A >fl. 

These operators generalize the "square root of angular mo­
mentum" introduced by Dirac in this treatment of the elec­
tron. 

It is in fact the study of orbits of commuting operators 
that should be of basic importance to a study of separation of 
variables. The particular example of Chandrasekhar5 has 
highlighted this feature. From the point of view of separation 
of variables theory the operators that are associated with it 
could be second order. As a step in this direction we extend 
the studies of McLenaghan to second-order matrix differen­
tial operators that commute with H. 

III. SECOND-ORDER CONSTANTS OF THE MOTION 
FOR THE DIRAC HAMILTONIAN IN E4 

In this section we study second-order operators of the 
type 

(3.1 ) 

which commute with the Dirac Hamiltonian in complex Eu­
clidean four-space. (To make the computations relatively 
straightforward we restrict ourselves to E4 .) The condition 
[H, 2'] = 0 is equivalent to the equations 

[Y(a, K bc) ] = 0, 

- 2Yd (adKab ) + [Y(a,Lb) ] = 0, 
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rd(adLa ) + [ra,M] =0, 

rd(adM) =0, 

(3.2c) 

(3.2d) 

where the ( ) subscripts denote complete symmetrization of 
the enclosed indices. 

Our purpose is to show that all second-order constants 
of the motion of the type (2.1) can be constructed as pro­
ducts of the first-order ones, as calculated in Sec. II. We note 
that the set {2'} does not close under commutation; how­
ever, if L), L2 are any two first-order matrix differential op­
erators that commute with H, then [L)L2,H] = 0. 

A suitable basis for {L} in E4 is 

Labe = rS[r(aZb aC ) - r(azc ab) ] + rd' 

a>b>c, a,b,c,d ,#, 

Qab = rSr[a ab l' a> b, 

Sabe = r(arb acp a>b>c, 

M = EabedyaybZc ad + ~rs, 
Mab =Z[a ab 1 + ~rarb' a>b, 
p;=a;, 

H=rl a; 

(3.3a) 

(3.3b) 

(3.3c) 

(3,3d) 

(3.3e) 

(3.3f) 

(3.3g) 

where all indices run from 1, ... ,4. From the first of conditions 
(3,2), if we write 

A A 

Kab = Kab I + Kaberc + Kabedrcrd + Kabersrc + Kabrs, 
(3.4) 

then the coefficients of Kab must satisfy 

K(abe)d = 0, (3.5) 

Kbed (~aa~dP - ~aP~da) + Kacd (~ba~d{3 - ~bfJ~da) 

+Kabd(~ca~d{3 -~cP~da) =0, (3.6) 
A 

K(abe) = 0, (3.7) 
A 

Kab = 0, (3.8) 

in addition to the obvious symmetries 

K[ab 1 = 0, (3.9) 

Kab(cd) = 0. (3.10) 

For the second set of conditions (3.2) we write 
A A 

La =LaI + Labrb + Laberbrc + Labrsrb + Lars, 
(3.11) 

with La(be) = ° and obtain 

acKab + L(ab)c + adKabdc = 0, 
A 

(3.12) 

a(cKlab Ide) + Efcde af Kab + 2LbEacde + 2LaEbede = 0, 
(3.13 ) 

A 

Ecdfe ac (Kabd ) + affKlab Ie 1 + EacfeLbe + EbefeLac = 0, 
(3.14 ) 

A A A 

ad (Kabd) + 2(Lab + Lbo) = 0, 

acKabe = 0. 

For the third set of conditions, we write 

M=MI + Mara + Mabrarb + Mcrsrc + Mrs 

and obtain the conditions 

acLac = 0, 

abLa + acLabe - 2Mab = 0, 
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(3.15 ) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

A A 

a(bLlalcd) + Eebed aeLa + 2EabedM = 0, (3.20) 
A 

a[bLlalcl + Edecb adLae + 2Eadcb Md + 2Ebdcb Md = 0, 
(3.21) 

A A 

acLac + 2Ma = 0. (3.22) 

We will now show that the space of operators L in E4 is 
spanned by all products of first-order matrix operators. 
From (3.12) and (3.5) we can see that 

a(cKab) = 0. (3.23) 

There are 50 independent operators L of the form 

L =Kab aa ab + Laberbrc aa +M (3.24) 

constructed from the symmetric products in the enveloping 
algebra, i.e., products of the form {p;.lj}, {P;.M;k}' 
{M;j.Mkl }. The conditions (3.23) are the equations for a 
symmetric Killing tensor to exist in four-dimensional flat 
space E4 • These conditions have been discussed by Katzin 
and Levin)4 and the above result is included in their work. 

From (2.6) we deduce that 

Kabc = 0, a,b,c,#, 

- Kaaa + 2Kabb = 0, a,#b, 

and consequently 

Kabe =Ka~ac' 

From (2.16) we have that 

aaKb + abKa = 0; 

(3.25) 

(3.26) 

(3.27) 

these are just Killing's equations. There are therefore ten 
independent operators of the form 

A A 

L = Kabcrcaa ab + Labrsrb aa + Labrb aa' (3.28) 

These operators are formed by taking symmetric products of 
the form {H, Ptl, {H,M;). 

From (3.7) and (3.14) we deduce that 
A 

K(abe) = 0, (3.7) 
A 

a(aKbe)d = 0. (3.29) 

The number of independent solutions can be calculated as 
follows. We note that for fixed d, K f:) = Kbed satisfies the 
equations for a second-order Killing tensor in four-dimen­
sional Euclidean space, i.e., 

a(aKb~? = 0. (3.30) 

It is known)4 that the vector space of second-order Killing 
tensors is in this case of dimension 50. Furthermore it is 
always possible to choose a basis of the form 

Kl.c =A l.c,efzezf' 1=1, ... ,20, 

It'!:c =B'!:c,eze' m = 1, ... ,20, 

vbc = C~, n = 1'00.,10, (3.31) 

where A l.c,ef' B ~c,e' and C l.c are constants. Consequently 
because of (3.30) we may write 

K f:> = CdlKbe + ddmlt'!:c + ednVbc' (3.32) 

Our problem is to determine the number of independent co­
efficients Cdl, d dm, edn, given that the Kabe are subject to the 
conditions (3.7) and 

(3.7) 
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ad aeK(abe) = 0. (3.33) 

To determine the number of independent coefficients edn 
A A 

consider the Kabe evaluated at 0, i.e., Kabe (0). There are 40 
such coefficients and they are subjected to 20 independent 

A 

constraints K(abe) (0) = 0. There are therefore 20 indepen-
dent constants edn

. These are constructed from the 24 anti­
commutators {Pe,Qab} subject to the four constraints 

Q(abPe) =0. (3.34) 

To determine the number of independent coefficients d dm 
A 

we consider aaKbed (0). There are 80 unknown coefficients 
d dm subject to the 51 constraints 

A 

aaKdaa (0) = 0, a=l=d, 
A A 

adKaad (0) + 2adKadd (0) = 0, a=l=d, 
A 

aeK(aab) (0) = 0, a,b,c =1= , (3.35) 
A 

aaK(abe) (0) = 0, a,b,c=l=, 
A 

adK(abe) (0) = 0, a,b,c,d =1=. 

All indices are distinct in these conditions and conditions of 
the last type are subject to the restriction 

A A 

aaK(bed) (0) + abK(eda) (0) + aeK(dab) (0 ) 
A 

+ adK(abc) (0) = 0, 

which follows from conditions (3.29). 
A suitable basis for operators associated with these inde­

pendent constants is obtained from the 52 anticommutators 
{Pa,Lbed}' {Mab,Qed} subject to the 23 independent con­
straints 

Q(abMc)d = LabePd + H 12, 

Q[alb Mb Ie] = Qea - LabcPb, 

P[aLbeld] = - MbeQad + Mad Qbe' (3.36) 

To determine the number of independent coefficients Cd1 we 
A 

consider the second derivatives aa abKcde (0). There are 80 
unknown coefficients Cd1 subject to 60 constraints: 

A A 

aaKdaa (0) = 0, adaaKdaa (0) = 0, a=l=d, 
A 

acaaKdaa (0) = 0, a,c,d =1=, 
(3.37) 

a ~(Kaab (0) + 2Kbaa (0») = 0, ab,c=l=, 

a e ad (Kaab (0) + 2Kbaa (0») = 0, a,b,c=l=. 

A suitable basis for operators associated with these inde­
pendent constants is obtained from the 24 anticommutators 
{Mab,Lede} subject to the four constraints 

Ma(bLlaled) = L bcd ' (3.38 ) 

From (3.5) and (3.13) we have the conditions 

K(abc)d = 0, (3.39) 

a(aKbc)de = 0. (3.40) 

We are, of course, also assuming that K abcd = K(ab)cd and 
Kabcd = Kab[ed ]. Conditions (3.39) are then equivalent to 
the four types 

Kabcd + Keabd + K bead = 0, a,b,c,d =1=, (3.41a) 
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Kacca = 0, a, =l=c, 

Kaacd + 2Keaad = 0, a,c,d =1=, 

Kaaad = 0, a,=I=d. 

(3.41b) 

(3.41c) 

(3.41d) 

Conditions (3.40) are equivalent to the five types 

aaKbeee + aeKabce + abKaeee = 0, a,b,c,e=l=, (3.42a) 

aaKbccb + acKbaeb + abKaceb = 0, a,b,c =1= , (3.42b) 

2 aaKaede + aeKaade = 0, a,c,d,e=l=, 

2 aaKaeee + aeKaace = 0, a,c,e=l=, 

aaKaade = 0, a,d,e=l=. 

(3.42c) 

(3.42d) 

(3.42e) 

The number of independent solutions of these equations 
again can be determined by the constants Kabcd (0) and all 
possible derivatives of Kabcd evaluated at O. The number of 
independent components of Kabcd (0) is 60 and the number 
of constraints of type (3.29) is 34. The number of derivatives 
aeKabcd (0) is 240. The number of constraints on the first 
derivatives are obtained by counting the number of in de pen­
dent constraints from (3.40) and the derivatives of (3.39). 
There are 136 such conditions, as it can readily be verified 
that all the conditions so obtained are independent. If we 
now repeat these considerations for the derivatives 
a e afKabed (0) we obtain at first glance 600 such derivatives 
and 628 conditions on them obtained by differentiating con­
ditions (3.39) twice and conditions (3.40) once. There are, 
in fact, only 600 independent conditions. This can be seen as 
follows. From the conditions 

aa (2 aaKaede + aeKaade) = 0, a,c,d,e=l=, 

a e aaKaade = 0, e,a,d =1=, 

we deduce that 

a~Kacde = 0, a,c,d,e=l=. 

(3.43 ) 

(3.44) 

Differentiating (3.41c) with respect to aa and using (3.42e) 
we have that aaKeaad = 0. Consequently the four conditions 

a e (aaKbeee + aeKabee + abKaeee) = 0, a,b,c,e=l=, 

which are obtained from (3.42a), are redundant. 
Further, the conditions 

aa (2 aaKacce + aeKaaee) = 0, a=l=c, 

a e aaKaadc = 0, c,a,d =1=, 

imply that 

a~Kaeee = 0, a,c,e=l=. 

The condition 

a ~ (Kaacd + 2Keaad ) = 0, a,c,d =1=, 

then implies 

a ~Kaacd = 0, a,c,d =1=. 

Then condition 

a b (acKbacd + abKaccb) = 0, a,b,c=l=, 

implies that 

a b acKabbc = 0, a,b,c=l=. 

Now conditions 
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aa ad (Kaacd +2Kcaad) =0, c,a,d#, (3.53) 

also imply (3.52), so they are redundant. There are 24 of 
them. Thus we have succeeded in showing that there are only 
600 independent conditions on the second derivatives 
ae afKabcd(O). In fact, apart from the redundancies noted 
above, all these conditions are independent. These computa­
tions indicate that there must be 58 independent solutions to 
our original conditions. These solutions can be generated by 
anticommutators {H,Qab}' {H,Labc }, {M,Ma}, {M,P), 
{Sabc,Mi), {Sabc'P), There are 60 oflhese combinations 
but there are two independent relations among them: 

. ~ Liik ( Pi + Pi + Pk ) + (IQii)H = 0. 

(3.54) 

(3.55) 
'>J> k i>i 

Theorem 1: Let H = raaa + m be the Dirac operator in 
complex Euclidean four-space. Further let Y = {L} be the 
space of all first-order differential operators L = F a + G 

A A a a 
that commute withH. Then the space Y = {f}, consisting 
of all second-order operators of the type L = Kab aa ab 
+ Lc ac + M, Kab =1=0, that commute with H, is spanned by 

all products of element pairs of elements of Y. 
Theorem 1 suggests that higher-order operators that 

commute with the Dirac operator also can be constructed as 
products of first-order symmetries, but we have not proved 
this. 

IV. SEPARATION OF VARIABLES FOR THE DIRAC 
EQUATION IN MINKOWSKI SPACE 

In this section we discuss how the first-order matrix op­
erators L that commute with the Dirac Hamiltonian can be 
associated with separable solutions of Dirac's equation. This 
was implicitly shown by Chandrasekhar's analysisS of Dir­
ac's equation in a Kerr background and explicitly by the 
detailed study8 of Carter and McLenaghan. In the limiting 
case, where the Kerr metric degenerates to a flat space met­
ric in oblate spheroidal coordinates, we have infinitesimal 
distance 

ds2 = dt 2 _ [r + a
2 

cos
2 

B dr + (r + a2 cos2 B)dB 2 
(r + a2

) 

+ (r + a2)sin2 B dt,62]. (4.1) 

A more familiar version of this infinitesimal distance can be 
obtained by putting r = a sinh 1J: 

ds2 = dt 2 - a2[ (sinh21J + cos2 B) (d1J2 + dB 2) 

+ cosh2 1J sin2 B dqi] . 
Dirac's equation in Newman-Penrose notation is 

(D + E - p)FI + (0* + 1T - a)F2 = imGI , 

(a + ft - r)F2 + (0 + P - 7)FI = imG2, 

(D + E* - p*)G2 - (0 + 1T* - a*)GI = imF2' 

(a + ft* - r*)GI - (0 +P* - 7)G2 = imFI • 

(4.2) 

Here we have used Chandrasekhar'ss notation for the spin 
coefficients and derivatives. A distinguishing feature of 
spinor equations is that the specification of coordinates does 
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not determine uniquely the resulting form of the equation; 
one also needs to specify a (null) tetrad or moving reference 
frame in order to write the resulting equation. These ideas 
have their natural framework in the tetrad formalism.s 

The first-order operators L, which commute with the 
Dirac operator H, are of crucial importance for the separable 
solutions of Dirac's equation computed by Chandrasekhar. 
We briefly review his procedure. Essentially Chandrasekhar 
has shown that Dirac's equation in a Kerr space-time back­
ground admits a solution which can be obtained from a sepa­
ration of variables ansatz. Since oblate spheroidal coordi­
nates in Minkowski space are a special case of the standard 
Kerr space-time metric, this implies that the Dirac equation 
in Minkowski space admits separable solutions in these co­
ordinates. 

What is interesting about Chandrasekhar's result is that 
the proper choice of null tetrad is unexpected. If we adopt 
coordinates t, r, B, and t,6, corresponding to the infinitesimal 
distance (4.1), the proper null tetrad has the components 

li=(I,I,0,a/(r+a2»), (4.3a) 

ni = [1I2(r + a2 cos2 B)] (r + a2, - r - a2,0,a), (4.3b) 

mi = [lIv'2(r + ia cos B) ](ia sin B,O,I,i/sin B). (4.3c) 

This is quite different from the appropriate choice in, say, the 
case of cylindrical coordinates with infinitesimal distance 

ds2 = dt 2 - dr - r dt,62 - dr, (4.4) 

li= (1Iv'2) (1,0,0,l) , (4.5a) 

ni = (1/v'2) (1,0,0, - 1), (4.5b) 

mi = (1Iv'2)(0, l,i/r,O). (4.5c) 

This frame is simply related to the frame of orthogonal vec­
tors 

e; = (1Iv'2) W + ni), e~ = (1Iv'2) W - ni), 
(4.6) 

e~ = (1Iv'2) (mi + mi), e¢ = (1Iv'2) (mi _ mi), 

where 

e~ el'i = 0, if Ii. #ft, 

e~eAi = EA, 

EA = + 1 if Ii. = 1 and - 1 otherwise. For all coordinate 
systems that are characterized by the Casimir operators of 
some subgroup chain of the Poincare group E( 3, 1), a choice 
of tetrad of this type will yield separable solutions and un­
coupled equations. IS There are sound group theoretical rea­
sons for this, which we do not elaborate on here. Now the 
obvious choice for oblate spheroidal coordinates would be a 
null tetrad constructed via (4.6) from the orthogonal vec­
tors 

e~ = (1,0,0,0), 

e~ = - ~ (? + a2)/(? + a2 cos2 B) (0,1,0,0), 

ee = (1I~? + a2 cos2 B)(O,O,l,O), 

e: = (lIsin B~)(O,O,O,l). 

(4.7) 

However, this choice does not lead to separable solutions. 
With the proper null tetrad (4.3) and 
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(4.8) 
g2 = (r + fa cos (})G2, gl = GI , 

Dirac's equation becomes 

!» oil + 2- 1/2!.i' 1/212 = m(fr + a cos (})gl' 

a!»I12 h - 21/2!.i' i/2iI = - 2m(ir + a cos (})g2' 
(4.9) 

!» oK2 - 2- 1/2 !.i'!12g1 = m(ir - a cos ()) h, 
a!»I12g1 + 21/2!.i' 1/2K2 = - 2m (ir - a cos ()) II' 

where 

!»o = ar + iK la, !»I12 = ar - iK la + ria, 

!.i' 1/2 = a() + Q + ~ cot (), !.i't2 = a() - Q + !cot (), 

and 

K = (r + a2)0- + am"', Q = ao- sin () + m'" csc (). 

In these equations the t and rjJ dependence has been removed 
by assuming it to be of the form ei(ut + m*¢) and factored out. 
These equations admit a separable solution if we make the 
substitution 

[< -;aCOS~OIP')90 
0 

0 
L= 

(rlV1 p"')!.i' 112 

(rlV1 p"') !.i'T12 ( - fa cos () 12p"') a!» 112 

In addition we have that [H,L] = 0, so L is a first-order 
matrix symmetry operator. In fact,8 

L = (1IV1)(I234 + aOI4 ), (4.14) 

where the operators I are those obtained from (3.3) for the 
corresponding realization in Minkowski space. In this parti­
cular case 

L234 = rr(x4 a3 - x 3 a4) + rr(x2 a4 - X4 a2) 

+r~(x3a2-x2a3)+rl, (4.15) 

014 = rrl a4 + r~ ai' 
where the r matrices satisfy 

{r,r}} =gij, 

where gij = diag( I, - I, - I, - I) and contravariant co­
ordinates Xi, i = 1,2,3,4. 

If one is to construct a satisfactory theory of variable 
separation for equations of Dirac type, examples of this type 
need to be explained. In fact, from our knowledge of separa­
ble systems for the scalar wave equation we can construct 
additional such examples of separation. Consider, for in­
stance, the coordinates 

t = r cosh (), x = ~ sinh () cos rjJ 

y=~ sinh (}sinrjJ, z=z, ( 4.16) 

O';;;r<oo, -oo<(}<oo, O.;;;(}< 21T, -oo<Z<oo. 

This is clearly a slightly different variation of oblate spheroi-
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II = R_ 1/2(r)S_1/2«(})' h = R I/2 (r)SI/2«(})' 
(4.10) 

gl = R I/2 (r)S_i/2«(}), g2 = R_ 1/2(r)SI/2«(})' 

The functions appearing in this substitution can be chosen to 
satisfy 

a I/2!»oR_1/2 = (A + imr)aI/2RI/2' 

!.i' 1/~1/2 = - (A - am cos (})S_1/2' 

!.i'I12S_1/2 = (A + am cos (})SI/2' 

(4.11 ) 

where A is a separation constant. If we write 1/! as the column 
vector (II' 12' gl' g2) the Dirac's equation has the form 
H1/! = m1/!. 

The separation constant is also the eigenvalue of an op­
erator L; i.e., 

L1/! = A1/!, ( 4.12) 

where 

(ia cos () 12 p) a!» 112 < - '/v2p) 2' ./> 1 
(rlV1 p) !.i'T12 Ua cos ~ Ip)9, . (4.13 ) 

0 

0 

dal coordinates. The appropriate null tetrad has contravar­
iant components 

Ii = (I,O,al(r + a2),I), 

ni = [1I2(r + a 2cosh2 (})] (r + a2,0, - a, - r - a2), 
( 4.17) 

mi = [lIV1(r + ia cosh (})] (0, I,ilsinh (},ia sinh ()). 

These coordinates (4.16) and (4.17) enable Dirac's equa­
tion to be written as 

(D+ + _I_)F\ + _I_(!.i' _ + ~ coth () )F2 = imGI , 

7j* V17j* 2 
( 4.18a) 

(4.18d) 
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whereD± =ar ±iam*/(r+a2) ±iT, 

2" ± = a() + (m*/sinh B) 

± aT sinh B, 1i = r + ia cosh B, 

and we have assumed l/J, z dependence to be ei(m*", + rz). 

Putting!l = 1i*F}> g2 = 1iG2, !2 = F2, and gl = G}> we 
can verify that separation of variables can be achieved via the 
substitution (4.10) and the coupled first-order equations 

D+R_1/2 = (A + mr)R 1/2 (4.19a) 

D_R_l12 = ( - A + mr)R_ 1/2 (4.19b) 

(- 112)2" +S-1/2 = (-A + ima cosh B)S+1/2' 
(4.19c) 

( - 112)2" -S1/2 = (A + ima cosh B)S_1/2' (4.19d) 

The operator whose eigenvalue is the separation parameter 
is L123 + aQ 14' For a genuinely new separable system differ­
ing from spheroidal coordinates consider the infinitesimal 
distance associated with the coordinate system (4.16), 

dr = (r + a2 cosh2 B) [ r dr 2 - dB 2] ( + a ) 

(4.20) 

If we allow rand B to be large and replace al2 by band l/J 
by 2v, we obtain the related infinitesimal distance 

dr = (r + b 2e2()[drlr - dB 2] - re2() dv2 - dr. 
( 4.21) 

We can then associate with this distance the null tetrad 

li= (l,O,blr,I), (4.22a) 

ni = [r 12(r + b 2e2()] (l,0, - b Ir, - 1), (4.22b) 

mi = [IN1(r + ibe() ] (0,1, - ie - (),ibe(). (4.22c) 

This coordinate system and frame clearly afford a separation 
of variables via the foregoing techniques. The separation 
equations can be obtained by the appropriate limits from the 
equations for the previous coordinate system. A suitable 
choice of space time coordinates is 

1 r _() b () 
t + x = -re()v2 + --e - --e 

b b r' 
(4.23) 

t - x = bre(), y = re()v, z = z. 
The operator which describes the separation of the variables 
rand B is 

(4.24) 

The examples of coordinate systems given here are based on 
the mechanism given in Chandrasekhar's original work. 
Clearly separation of variables for Dirac's equation depends 
on a simultaneous choice of coordinates and null tetrad. 
What is the connection between the null tetrad (4.3) and 
oblate spheroidal coordinates (4.1)? The operator L (4.14) 
has associated it with a Killing-Yano tensor DC b with ma­
trix elements 

[0 ° ° ;] D<, ~ ~ ° _x4 

X4 ° 
2 • -x 

_x3 x2 

° 
(4.25) 
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If we compute the roots and eigenvectors of Dab' 

(DCb -A8C
b)Vb=0, (4.26) 

we obtain 

(i) A = ± ir, v- ( ± ia sin B,O,l, ± ilsin B), 
(4.27) 

(ii) A = ± a cos B, v-(I, ± 1,0,al(r + a2»). 

Here we have written the eigenvectors relative to the t, r, B, l/J 
moving frame and have chosen Minkowski space-time co­
ordinates as in (4.16). From (4.3) we see that these eigen­
vectors are, apart from normalization conventions, the basis 
vectors that define the null tetrad (4.3). We can go further 
than this. Consider the square of the matrix D = (D a b ). We 
know ll that gab =DacD c

b is a Killing tensor and, from 
what we have just observed, the above eigenvectors are also 
eigenvectors of Dab' In fact the Killing tensor gab is inti­
mately related to the choice of coordinates t, r, B, and l/J. Ifwe 
pass to the cotangent bundle (i.e., phase space in Minkowski 
space-time), then 

D = gCbpcPb = m~3 + m~4 + m~4 
+ ap1m23 + a2( pi - p~), 

where we have used the notation 

mij = xp~ - xjpxi
, i,j = 2,3,4, 

Pi = pXi, i = 1, ... ,4. 

(4.28) 

(4.29) 

(4.30) 

These linear forms on the cotangent bundle, together with 
l' . 1 • n1j =xpx'+x'px, }=2,3,4, (4.31) 

form the usual representation of the Poincare algebra E( 3, 1 ) 
with the Poisson bracket as commutator. 

For additive separation of variables for the Hamilton­
Jacobi equation 

H nCb b 2 2 2 2 E (432) =5PyCPy =Px·-Px;'- Px3 - Px4 =, . 

expressed in a given coordinate system {v,} (e.g., t, r,B, l/J, 
oblate spheroidal coordinates), there is a complete the­
ory.16.17 

Theorem: Necessary and sufficient conditions for the 
existence of an orthogonal separable coordinate system {v,} 
for the Hamilton-Jacobi equation 

(4.33) 

i j = gii, 1 <'i,j<.n, are that there exist n - 1 quadratic 
functions A a = a(a)abpaPb satisfying the following. 

(1) The {A a} are constants of the motion, i.e., 
[H,A a] = 0, a = 1, ... ,n - 1, where [ , ] is the Poisson 
bracket. 

(2) The {A a} are in involution: [A a,A P] = 0, 
1 <a,f3<n - 1. 

(3) The set {H, A t, ... ,A n - I} is linear independent (as 
n quadratic forms). 

( 4) At least one of the quadratic forms, say AI, has sim­
ple roots. 

( 5) In a local coordinate system {z'} the quadratic 
forms satisfy the algebraic commutation property 

a(a) aba(P)bc = a(P) aba(a)bc' 

To obtain additive separable solutions we identify 

Kalnins, Miller, Jr., and Williams 1899 



                                                                                                                                    

Px i = axiW and look for solutions of the form W = ~7= I Wi 
(j.e). which are a complete integral. i.e .• 
det(ayi aC} W) #0. e = (c1"",Cn ). 

For oblate spheroidal coordinates a suitable choice of 
basis for the constants of the motion {A (al} is 

A I =mi3 +mi4 +m~4 +a2(pi +p~). 
(4.34 ) 

A I = pr, A 3 = mi3 . 

Strictly speaking a set of constants of the motion in which A I 

is replaced by D will not satisfy the criteria of our theorem. 
In particular. condition (5) is not satisfied. However. it is 
obvious from (4.28) and (4.34) that in oblate spheroidal 
coordinates we could always choose separable solutions for 
which D = CI• p~ = Cz• mi3 = C3• for fixed constants CI• 
C2• C3' Thus there are involutive sets of operators that do not 
satisfy the criteria of our theorem but that admit additively 
separable solutions in which each element of this involutive 
set is a constant. Furthermore these involutive sets define 
different null tetrads from those defined f<?r the involutive set 
satisfying the Theorem: 

li= (1/\"1)(e~+e~), 

ni = (1/\"1)(e~ - e~). 

mi = (1/\"1) (ee + ie:). 
From the group-theoretic point of view it is not possible to 
use group motions under the adjoint action of the Lie algebra 
totransformtheset{D,p~. mi3' H}into{A I,A Z,A 3,H}asin 
(4.34). Thus if we classify orbits of triplets {L,.LZ.L2} of 
second-order elements in the enveloping algebra (to within 
the addition of arbitrary multiples of H), the sets {D, 
p~ , mi3} and {A ',A z,A 3} lie on different orbits. Although 
there is only one orbit that corresponds to the conditions of 
the theorem, there are, in general, several orbits of involutive 
sets of operators for which variable separation is possible in a 
fixed coordinate system. The analysis we have made of this 
specific case of separation of variables proceeds in an analo­
gous way for the other two examples of variable separation 
we have given. viz. coordinates (4.16) and (4.23) and asso­
ciated null tetrads (4.17) and (4.22). respectively. More re­
cently Carter and McLenaghan'8 have given a master sepa­
ration equation for all the separable perturbations of spin-O. -
!, -1, and -2 in a Kerr space-time background. Kamran and 
McLenaghan '9 have also gone some way toward finding the 
conditions under which separation of variables occurs for 
the Dirac and neutral equations. It is our intention to pursue 
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these matters further and develop an intrinsic theory ofvari­
able separation for equations of physical importance. 
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A neutral scalar field A (x) is considered that has to be smeared by Fourier transforms of COO 
functions with compact support but otherwise fulfills all the Wightman axioms, except strict local 
commutativity. It is shown to fulfill the PCT symmetry condition (where n denotes the vacuum 
state vector) (nIA(x1) ... A(xn)n) = (nIA( -xn ) ... A( -x1 )O) if and only if (OIA(x1) ..• 
A (xn )0) - (OIA (xn ) ... A (x 1)O) can be represented, in a sense, as an infinite sum ofderivatives 
of measures with supports containing no Jost points. 

I. INTRODUCTION 

As pointed out in Ref. 1 it might be important in quan­
tum field theory to avoid any a priori restriction on the high­
energy behavior of the fields. Therefore the Schwartz space2 

.Y (R4) of standard Wightman theory3 should be replaced 
by the Fourier dual SO(]R4) = §; (]R4) of!$ (R4). Obvious­
ly, this leads to a theory of highly nonlocalizable fields. Nev­
ertheless, using a natural relaxed locality condition4 it was 
possible to prove the spin-statistics theorem for such fields. 1 

The main purpose of the present paper is to derive the 
peT symmetry within the same framework along the lines 
sketched in Ref. 4. In Sec. II we briefly review the notion of 
quasisupport, necessary for formulating the relaxed locality 
condition, and restate the basic conjecture made in Ref. 4. In 
Sec. III the corresponding form of the PCT theorem will be 
proved, assuming the basic conjecture to be correct. In Sec. 
IV, finally, the conjecture will be rigorously justified. 

II. QUASISUPPORTS 

As in Ref. 4, lacking any sensible notion of support for 
functionals on SO(Rn ) = §; (an ), let us introduce the fol­
lowing definition. 

Definitions,,· A closed subset M of an is called a quasi­
support of the generalized function F e SO (an)' iff, for every 
€>O, there are complex-valued Borel measures Pa (X) on 
Rn,a e zn+, withsuPPPa C UE (M) andafunctionN(A) on 
an such that 

aSEU? Alai f 1(1 + IIxlI) - N(A) dPa (X) I < 00, 

+ 

for every A > 0, 

and 

F(X) = L D; Pa (X) 
aeZ,+ 

in the distributional sense. 
Note that, according to Lemma2.1 of Ref. I,M = Misa 

quasisupport ofF e S o(Rn )' if and only if Fis locally contin­
uous on M with respect to SO(Rn ) in the sense of Ref. 6. 
Therefore, an important consequence of Lemma 2.2 of Ref. 1 
is the following lemma. 

Lemma 1: Let€>O and MCRn. If UE(M) is a quasi­
support of FeSo(Rn )', then so isM. 

One of the essential tools used in the next section is the 
generalized nuclear theorem (Ref. 6, Lemma 2) forSo(Rn). 
Let us, therefore, recall it in a form using the notion of essen­
tial support instead of local continuity. 

Lemma 2: Let (;I"",;n )-FO(;I"",;n ) be a multilin­
ear functional onSO(R1) X··· XSO(R1) that is continuous 
in each variable separately. Then there is a unique general­
ized function Fe SO (Rn )' fulfilling 

FO(;I""';n) = f dXF(X);I(X
1

) "';n(X
n
), 

for ;1"",;neSo(R1). Moreover, let n'<n and let 
M =MCRn'. If, for arbitrary t/Jn'+ I, ... ,t/Jn eSO(RI),Misa 
quasisupport of the SO(Rn' )' element 

;- f dX F(X);(XI'''·,Xn')t/Jn' + dx"'+ I) ... t/Jn (X"), 

thenM XRn-,,' is a quasisupport of FeSo(R" )'. 

We conclude this section by reformulating7 the basic 
conjecture made in Ref. 4. 

Conjecture: Let the complement a 4(" + I) \In + I of the 
set of Jost points 

I n + I = {x e a
4
(n+ I): Ctl Av(Xv - xv+ I) r <0, for AI"'" An >0, with A.tl Av >O} 

be a quasisupport of Fe sO(R4(n + I),. If 
supp FCMn + 1= {fteR4(n+1l:Pl + ... +P,,+I =0, i P,.. e V+,forv= 1, ... ,n}, 

,..=1 

thenF= O. 
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By Lemma 1, this formulation is equivalent to the one 
presented in Ref. 4, indeed. 

III. peT THEOREM 

As indicated in the Introduction, we consider a general 
field theory fitting into the Wightman framework (Ref. 3, 
Chap. 3) subject to the following two modifications. 

Modification 1: Replace Y(R4) by SO(R4). 
Modification 2: Relax the usual locality condition by 

using the notion of quasisupport. 
For simplicity we deal with a single neutral scalar field A (x) , 
only. 

By Lemma 2 the (n + 1)-point function 

Y(X)= (OIA(x,) ... A(xn+, )0) EsO(lR4(n+ I)' 

has the following property. 
Essential weak locality: R4(n + I) \In +' is a quasisup­

port of 

Y(x" ... ,x" + ,) - Y(x,,+ " ... ,x,) EsO(R4(n+ I) )'. 
We want to prove that essential weak locality is equiva-

lent to the following property. 
PCT symmetry: 

Y(x" ... ,xn+') = Y( -x,,+ " ... , -x,). 

The idea, of course, will be to apply the conjecture of 
Sec. II to 

F(x)=Y(x" ... ,xn+') - Y( -x,,+ " ... , -x,) 

in order to get PCT symmetry from essential weak locality. 
Indeed, as in standard Wightman theory (Ref. 3, 

Theorem 3.2), we easily check 

supp 1r(p) CM"+,, 

hence also 

suppF(P)CM,,+ ,. 

Therefore, we are left to prove that R4(n + I) \J" +, is a 
quasisupport of F(x) if and only if essential weak locality 
holds. The latter equivalence is a direct consequence of the 
following lemma. 

Lemma 3: R4(" + I) \In +, is a quasisupport of the gen­
eralized function Y(X) - Y( - x) E SO(R4(" + ') )'. 

Proof of Lemma 3: As in standard Wightman theory 
(Ref. 3, Chap. 2.1) we easily see that there is a Lorentz­
invariant generalized function8 Wet) E SO(lR4" )' fulfulling 

I dt W( ±t) I dxn+, ,p(t,x,,+,) 

= f dx Y( ± x),p(x, - X2,· .. ,xn - Xn +,,xn +, ), 
for,pESo(lR4(n+l) (3.1) 

and 

supp WC V+X'" X V+. (3.2) 

Now (3.1), Lemma 2, and an elementary estimate show that 
R4(" + I) \J" +' is a quasisupport of 

Y(X) - Y( - x) E SO(lR4(" + I) )' 
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ifR4"\.I,,, where 

.1,,= {t ER4": Ct, AVSvY <0, 

for A" ... ,)." ;;;'0, with vt, Av >o} 
isaquasisupportofW(t) - W( - t) ESo(R4" )'. Thus, by 
Ref. 1, Lemma 2.1, it is sufficient to prove that 

:~~ II dt(W(t) - W( - t»)¢(t) I < 00, (3.3) 

for every subset S of SO(lR4n ) that is locally bounded on 
lR4n \.1" . Local boundedness in the present case means exis­
tence of some E> 0 such that 

for every positive integer N. By Lemma 2.2 of Ref. 1, (3.4) 
implies 

sur sup (1 + lit II)NEa?+ ... +a~ 
s~, ... ,s II e RI a~, ...• a~ E z+ 

for¢ES, (s:,,,.,s~) ER3
", N= 1,2, ... , 

and hence 

supp~C {qElR4n: Iq~l<l!E, forv= 1, ... ,n}, 

for¢ ES. 

We now choose some g E g (lR') fulfilling 

g(t) = 1, if It 1< (n/E)2, 

and define 

Wg (q)=W(q)g(q, + ... + q" )2). 

Then (3.2), (3.5), and (3.6) imply 

I dt(W(t) - W( - t»)¢(t) 

(3.5) 

(3.6) 

= I dt(Wg(t) - Wg( -t»)¢(t), for¢ES. (3.7) 

On the other hand, since g has compact support and since 
wet) is Lorentz invariant, we easily see9 that Wg (t) is [the 
restriction to S ° (lR4n ) of] a tempered Lorentz invariant dis­
tribution. Moreover, (3.2) implies 

supp Wg C V + X ... X V +. 

Therefore, we may apply the standard BHW technique 
(Ref. 10, Part I) to obtain 

supp(Wg(t) - Wg( -t»)CR4"\jn' 

This together with (3.7) and (3.4) implies what we were left 
to prove, namely, (3.3). • 

Summarizing, assuming the conjecture of Sec. II to be 
correct, we have proved the following theorem. 

PCf Theorem: Let the neutral scalar field A (x) fulfill 
all the Wightman axioms, except locality, with Y(R4) re­
placed by SO(R4). Then peT symmetry is equivalent to es­
sential weak locality, as defined above. 

W. LOcke 1902 



                                                                                                                                    

IV. PROOF OF THE BASIC CONJECTURE 

LetFeSo(R4(n+ I) )' fulfill the requirements of the conjecture of Sec. II. Then, by Lemma 2, it is sufficient to provell 

G~ (€) = 0, for every t,6 e SO(Hln +4), 

where G~ (€) e SO(Hln ), is defined by 

f ~ ~ ~ f~ ~ 001 100 I I dtG~(t)t/J(t)= dXF(x)t/J(x l -Xl,xl -xl,···,xll -xlI+I,x1l -xlI+d 

xt,6(,xf -~,x~ -xL···,x! -X!+I,x! -X!+I,xn+I)' 

for t/J e SO(Hln ). Let us define 

VI={SeHl:to>ltll}, Vl=={SeHl:tl>ltOI}, V3=={teHl : -to>ltll}, V4={SeHl:-t l >ltOI}· 

Then. fort,6 eSO(HllI + 4
). one easily checks that HllI \/~l), where 

1 ~l)={€ e HllI: either tv e Vl for v = 1 •...• n or tv e V4 for v = 1, ... ,n}, 

is aquasisupport ofG~ eSO(RllI )' and thatll 

supp G~ C VI X ..• X VI' 

Therefore it is sufficient to prove the following theorem. 
Auxiliary Theorem: Let HllI \1 ~2) be a quasisupport of G e SO(H211 )'. If supp GC VI X ••. X VI' then G = O. 
Unfortunately, there seems to be no simple way of reducing the general case n > 1 to the special case n = 1, managed in 

Ref. 1. This is because the spaces SO(Hk
) do not contain functions with exponential decrease at infinity. 

In the course of the proof of the auxiliary theorem we shall use the following notation: 

/ ={j = (j I, ...• j "):j v e {l,2.3,4}. for v = 1 •..• ,n andj:l: (22 •... ,2),(4,4, ... ,4»), 

'Yj = Jj, X ..• X Vr forje/. 

r j =(H2 +iJj,)X ..• X(H2+i~ft)' forje/. 

d(c5) ==(15 cos ( 1r/2 - 15) )-1, for 15 e (0,1r), 

BI,05={l1 e H2: 11111 <11° tan(1r/4 - 15),111111 <d(c5)},} 

B2,o5={l1eH2: (111,11°) eBI,05}' forc5e (0,1r/4), 

B3,o5= - BI,05' B4,o5= - B2,o5' 
r j ,05==(Hl + iBj ',05 X ••. X (Hl + iBj",o5)' forj e / and 15 e (0.1r/4). 

By straightforward generalizationl3 of the auxiliary results presented in Luckel3 we get the following lemma and corol­
lary, 

Lemma 4: For sufficiently small 15 > 0, the region 

{q + il1 eel: IIqll + 111111 < n} 

is contained in the envelope of holomorphy of 

(Hl\ VI )u(Rl + iBI,05 )u(H2 + iB3,o5)' 

Corollary: Let 15 > 0 be sufficiently small and let/be a polynomially bounded function over H2 fulfilling 

sup sup exp(IIAall/c5) I/(Aa) 1 < 00 • 
..left' aeB2•8 

Ifsupp]C VI' thenj(q) = 0, for q e U~2)(0)=={q e H2: IIqll <n}. 
Now we are well prepared for the proof. 
Pro%/ the auxiliary theorem: Given arbitrary N> 0 and X e 9 (H211 ) fulfilling 

sUPPXC Vix •.• X VI' 

it is obviously sufficient to provel4 

(G*X)(q) =0, ifllqvll <N, forv= 1, ... ,n. 
Since uJ e/ 'YJ is a quasisupport of G, we may represent G as a sum 

(4.1) 

(4.2) 

G = L GJ, (4.3) 
Je/ 

where 'YJ is aquasisupport of GJ e SO(R211 )' forj e /. Therefore the Laplace transforml5 !L' GJ of GJ,j e /, may be defined 
as an analytic function over r J fulfilling 
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lim sup I (G/x)(q) - f dq'(,YGj)(q' + i-q)X(q - q') I = 0, for every compact subset K ofR2n. (4.4) 
E--+O q+ if,e rj 

qeK.lIl1l1<.-

Let us now choose some 8 e (0,17'/4), being sufficiently small 
in the sense of the corollary, and two bounded analytic func­
tions h o(q), h I(q) over R2 + iU~~~/3) (0) fulfilling, there, 
the conditionsl6 

q e Vk::::}h(q)=(h o(q),h I(q») e Vk, 

'1/ e Vk::::}h(q + i'1/) e R2 + Wk, 

for k = 1,2,3,4, 

UJ.l)(O) Ch (U\2)(0», 

and 

lim sup 111m h(q + i'1/)1I = o. 
E--+O q + 111 e H' + IU ~2) (0) 

Thus, for j e /", 

lij (q + i-q) 

= f dq' ('yG) 

X «(h(ql + i'1/I), .. ·,h(qn + i'1/,,») - q')X(q') 

(4.5) 

(4.6) 

is bounded and analytic over r).c5/3 and, by (4.4), fulfills 

lim sup llij(q) -Hj(q+i-q)1 =0, 
.----.0 q + if, e r j ,613 

(4.7) 

1If,1I<.-

where 

lij (q)==(Gj*X)(h(ql), ... ,h(q" »), for q e a2". (4.8) 

Next, define 

fj(a,~)== f dqlij(q)exp ( - vtl llq,,1I
2
) 

Xexp (- i ± qv • (S" - a») , 
,,=1 

(4.9) 

for a e R2 and ~ e R2" . Then, by (4.7) together with bound­
edness and analyticity of lij, the Cauchy integral theorem 
implies 

fj(a,t) = f dq lij(q + i-q)exp( - (q + i~)2) 

xexp ( -i "tl q,,' (S" -a») 

X exp ( ~ . ~ - a . "tl '1/,,) , 

for ~ + i-q e r).c5/3 • (4.10) 

For every j e /" there is some vo e {1, ... ,n} withj"° #4 
and some '1/"0 e B 1'o,c5/3 with 

inf a '1/"0 (17' 8) 
QeB2,6 jj;jf·II'1/".I! > cos 2" - 2" . 

Hence, choosing 11'1/"0 II sufficiently large and 11'1/" II for v#vo 
sufficiently small in (4.10), we see that 
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sup sup exp( IIAa1l/8) 1 fj (A.a,t) 1 < 00, 
A>O QeB2,6 

for j e /" and ~ e a2" . Similarly, 

sup sup exp(IIAaIl/8)Ifj (Aa,t) 1 < 00. 
A>O QeB.,6 

Summing over j we get 

sup sup exp(IIA.all/8) Ih (A.a) 1 < 00, 
AeH' QeB2,6 

for ~ e R2" , where 

h(a)= L fj( -a,t), fora e R2, ~eR2". 
je,/" 

Equations (4.9), (4.8), and (4.3) imply 

h (a) = f dq(G *X)(h(ql, ... ,h(q,,») 

(4.11 ) 

xexp ( - "tlllq,,1I2) exp ( -i "tl qv(S" +a»). 

(4.12) 

Therefore, by (4.1) and (4.5) we have 

supph C VI' 

since 

supp GC VI X ... X VI' 

This together with (4.11) implies 

h(q) =0, forqe U~2)(0), 

by the corollary. Thus, integrating (4.12) with suitable test 
functions of a and~, we see 

(G *X)(h(ql), ... ,h(q,,») = 0, 

if IIq,,1I < 1, for v = 1, ... ,n. 

By (4.6), this implies (4.2), completing the proof of the 
auxiliary theorem. • 
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Certain classes of the exact solution of the equation of nonstationary potential flow of a 
compressible gas are found. The method described by Kalinowski [M. W. Kalinowski, J. Math. 
Phys. 15, 2620 (1984); Lett. Math. Phys. 6, 17 (1983); 7, 479 (1983)] is applied. These 
considerations are carried out locally at an established point of space of a hodograph. Some 
algebraic properties of simple integral elements are analyzed, and certain exact classes of solutions 
are constructed. Finally a certain physical analysis of the achieved results is carried out. 

I. INTRODUCTION 

Let us consider the system of partial differential equa­
tions of the form 

...w( I 2 I) aUj ( I 2 n) - 0 Uj U ,U , ... ,U - x,x , ... ,x - , 
ax" 

s = 1, ... ,m, v = 1, ... ,n 

j = 1, ... ,1, m>l, 

x = (xl,x2, ... ,xn)E E, 

u(x) = (UI (x), ... ,ul(x»)e H, 

(1) 

which is a quasilinear, homogeneous system of the first order 
with coefficients dependent only on the unknown functions. 

This system may be undetermined, i.e., m>l. Let us as­
sume that this system is nonelliptical. That means that there 
are nontrivial solutions of the algebraic system of equations 

ajyjA I = 0, where rankllajA" II < I, (2) 

for the vectors yE R 1 and AE R n. The above algebraic system 
of equations defines the so-called knotted characteristic vec­
tors respectively in a hodograph space H = R 1 (space of 
values of the unknown functions) and in physical space 
E = R n (independent variables). The pair y and A is called 
knotted, if it satisfies Eq. (2). This fact is denoted by y-A. 
Matrix L ~ = yj . A" created by the pair of knotted vectors is 
called a simple integral element since rank ilL jv ( uo) II = 1. It 
is convenient to treat A as an element of space E *. On the 
other hand, in the terminology of tensor calculus, if we con­
sider XE E as a contravariant vector thenAE E * is a covariant 
vector. In this language element L is an element of tensor 
space TuH®E* oftheformL = V®A. 

Now we introduce the concept of a simple wave, which 
provides us with the separation of simple integral elements 
from the set of integral elements. Let the map u: D-+H, 
DeE be any solution of system ( 1 ). We call it a simple wave 
for a homogeneous system if the tangent mapping du is a 
simple element at any point XoE D. Let us consider the 

a) On leave of absence from the Institute of Philosophy and Sociology, Po­
lish Academy of Science, 00-330 Warsaw Nowy Swiat 72, Poland. 

b) Permanent address: Department of Physics, Institute of Geophysics, 
Warsaw University 02-093 Warsaw, Pasteur 7, Poland. 

smooth curve r: U = f(R) in the hodograph space H para­
metrized by R, such that the tangent vector 

df(R) = r(f(R») 
dR 

(3) 

is a characteristic vector. Then, there exists a field of the 
characteristic covectors A (u ) , connected with the field 
r(f(R»), defined on the curve r: A = A (f(R»). We have the 
following theorem. 

The Theorem: If the curve r C H obeys the condition 
( 3) and if t/J ( .) is a differentiable function of one variable, 
then the function U = U (x) given in an implicit way by the 
relations 

(4) 

is the solution of the basic system (1). The above solution is 
called a simple wave (or the Riemann wave). The proof may 
be obtained by direct differentiation of the relations (4). 
Vector A appearing in this expression defines velocity and a 
direction of appropagation of waves. The curve r obeying 
the condition (3) is called a characteristic curve in the hodo­
graph space. This theorem tells us that if the map u: 
ECD-+H is a simple wave then the image of map u is a 
characteristic curve in space H. A parameter R defined on 
this curve is called the Riemann invariant. 

II. EQUATION OF POTENTIAL FLOW OF 
COMPRESSIBLE GAS 

In this paper we discuss the flat nonstationary flow of 
compressible gas described by potential of velocity and den­
sity 

lnp= -4»", v=V4». (5) 

This assumption allows us to describe discontinuities of ve­
locity and density as a change of the gauge of this potential 
on both sides of the surface of discontinuity. Eliminating 
density p from the mass conservation law, 

ap + dive Pv)=(~ + vv'L + p div v = 0, at at r 
1906 J. Math. Phys. 27 (7). July 1986 0022-2488/86/071906-10$02.50 © 1986 American Institute of PhysiCS 1906 



                                                                                                                                    

by means of the Euler equation 

(!.... + VV)v = _ Vp = _ c vp, 
at p p 

we get 

a lnp + c div v _ v(av + (VV)v) = 0. 
at at 

Introducing here the potential according to Eq. (5) we 
find 1-3 

cit ,tt + 2 (cit ,x cit ,xt + cit ,Y cit ,yt) + 2 cit ,x cit ,Y cit ,xy 

+ (cIt~x -c)cIt,xx + (cIt~ _c2 )cIt,yy =0, (6) 

where the lowest indices are for partial derivatives. The ve­
locity of sound C 2 is given by a variant of the (compressible) 
Bernoulli equation: 

actt + 1- (VcIt)2 + f dP = const or modulo (5), 
at 2 p 

2actt 12 
(l-c )-+-v =const. 

at 2 
We consider a special situation when the velocity of sound is 
constant c2 ;::::20 (see Refs. 1 and 2). 

The above treatment of the potential, nonsteady, com­
pressible flow is not very well known for the class of flows' 
considered. Moreover it goes to the correct equation (see 
Refs. 1 and 2) without redefinition of the potential as in 
Thompson's book.3 Thus all hydronamica1 quantities (v, p) 
are treated equally in this particular potential approach. 

It is easy to notice that the discussed equation (6) is a 
hyperbolic equation of the second order. We are interested in 
finding solutions that can be described by means of the Rie­
mann invariant method. According to the requirements of 
the method we transform Eq. (6) by introducing some new 
dependent variables into the quasilinear system of equations 
of the first order, 

4>o,t + 2(4)14>0,x + 4>24>0,y) + 24>14>24>1,y 

+ (4)i - C2)4>I,x + (4)~ - C)4>2,y = 0, 

4>o,x - 4>I,t = 0, 4>1,y - 4>2,x = 0, 

4>0,y - 4>2,t = 0, 

where we introduce the notation 

cIt,t = 4>0' cIt,x = 4>1' cIt,y = 4>2' 
V = (4)1 (t,x,y) ,4>2 (t,x,y» = +, 
p = exp( - 4>0(t,x,y». 

(7) 

(8) 

Thus Eq. (6) is reduced to an undetermined system of four 
equations for three functions 4>0' 4>1' 4>2' 

It is convenient to do the following transformations: 

t_t' = cot, 4>o-fJo = 4>o!co. (9) 

Then we can write (7) in the following form: 

4>o,t' + 2(4); 4>0,x + 4>i4>o,y) + 2tf>; 4>i4>i,y 
+ (4);2 - 1)4>;,x + (4)i2 - l)4>i,y = 0, 

4>o.x - 4>;.t· = 0, 4>;,y - 4>2.x = 0, (10) 

4>o,y - 4>2.t· = 0. 
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The field of velocity of flow v and the density p are in the 
following form: 

v = co(4); (co,t,x,y),4>i (Cof,x,y»), 

p = exp( - cot/>o (cof,x,y) ). 

III. SIMPLE INTEGRAL ELEMENTS 

Let us write Eq. (6) using real simple integral elements. 
We get 

yilAo + 2(4)lyilA I + 4>2yilA2) + 2tf>14>2ylA2 

+ (4)~ - C2)y2A2 + (4)i - C2)y1A l = 0, (1Ia) 

yPA" -y"AI' =0, ,u,v = 0,1,2. (llb) 

From Eq. (lIb) we get that the vector y is proportional to 
vector A. Thus, by inserting y-A into Eq. (Ha) we get a 
quadratic form with respect to Ao, AI' A2: 

Q(AO,A.l,A.2) = A ~ + U o(4) lAI + 4>~2) + 2tf>14>~IA2 

+ (4)i - c2 )...t ~ + (4)~ - c2 )...t ~ = 0. (12) 

Now, we follow Ref. 4. We transform the quadratic form 
( 12) to a canonical form. We search for eigenvalues of ma­
trixA (the matrix of the quadratic form Q), 

det(Aij - ,u8ij) = 0, 

where 

(13) 

We get the algebraic equation of third order with respect to 
quantity,u, i.e., 

(c +,u) [ -,u2 + ,u(4)~ + 4>~ - c + I) + c2] = 0. 

The eigenvalues,u are real, 

(14) 
,u2,3 = !(4)~ + 4>~ - c2 + 1 ± ..JK), 

where 6. = (4)~ + 4>~ - c2 + 1)2 + 4c2 > 0. Thus the qua­
dratic form (12) transforms to a canonical form: 

Q(Y,y) = - C2~ + !(4)~ + 4>~ - c2 + 1 + ..JK)~ 

+! (4)~ +4>~ -c + 1 -..JK)~. (15) 

According to Refs. 4 and 5 we parametrize the convector A. 
To do this we search for a parametric equation of ( 15). 

Let us suppose thatYI #0. Then Eq. (15) may be writ-
ten in the form 

X 2 r 2 ----2c where X=Y2 y=Y3, (16) 
0 2 b 2 - , Y\ ' Yl 

and 

0
2= (4)~ +4>~ _c2+ 1 +..JK)-I, 

b 2 = (..JK - 4>~ - 4>~ + C _I)-I. (17) 

If Yl = 0, Y2 #0, and Y3 #0, then Eq' (15) is as follows: 

(v2 - C + 1 + ..JK)~ + (v2 - c2 + 1 - ..JK)~ = 0. 
(18) 

Equation (16) is the equation of a hyperbola. 
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Thus we write it in a parametric form 

X = Ji ae cosh T, Y = Ji be sinh T, (19) 

where T is an arbitrary function of t/>;. j = 0,1,2. Thus the 
covector A. (and consequently r) became 

rl-A. I = B(~) =B(Jiae ~Sh T)' (20) 

Y Ji be sinh T 

where B is an orthogonal matrix, which diagnolizes the ma­
trix A, i.e., 

BTAB=(~ ;2 ~), BT=B- I. 
o 0 1'-3 

(21) 

MatrixB is built from the eigenvectors of matrix A and takes 
the form 

where 

h= [V2{(~+ I_v2+$)2+4v2} 

x{(e2 + 1 _ v2 _ $)2 + 4v2}] 112. 

Inserting (18) and (22) to (20) we get a covector A. 
In the case withYI = 0 we get 

X =Y~Y2 = €b/a, ~ = 1. (23) 

Finally we obtain 

r2-A.2=B(~)=B( ~ ). 
x €b/a 

(24) 

Inserting (18) and (22) into (24) we derive a simple ele­
ment. According to Refs. 4 and 5 we consider the cases with 
Y2 =I- 0 and after withY3 =1-0. We may introduce the following 
coordinate systems: 

X=YI, y=Y3 or X=YI, y=Y2. 
Y2 Y2 Y3 Y3 

Proceeding as before we get following simple elements: 

r3-A3 = B(~)=B(l/.J2a;)COST) (25) 

Y (b/a)sin T 

and 

r'-A'~Bm~{%~~=~T) (26) 

Let us consider cases Y2 = 0 or Y3 = O. We get 

X = Y3/YI = €beJi or X = Y2/YI = €aeJi. 
This time we obtain the following simple elements: 

rS-AS=B(~)=B( ~ ) (27) 

\; €be,fi 
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and 

r'-A'~BG)~Bh<2) (28) 

Thus we get here six kinds of simple elements that will be 
used for construction of solutions, i.e., simple waves and 
their interactions, the so-called double and multiple waves. 
All of these simple elements are presented in the Appendix. 

IV. SIMPLE WAVES 

Now, we present the simplest solutions of Eq. (6), i.e., 
those which have been constructed on the basis of particular 
simple integral elements. The method of searching the solu­
tions is presented in Refs. 6-8. According to the terminology 
used there the elementary solution of a homogeneous sy~tem 
is called a simple wave. These solutions may be regarded as 
waves since they represent moving disturbances whose pro­
file changes in general in the course of propagation-an indi­
cation of this is an implicit form of the relation (4) for func­
tion R (x). The form of solution (4) suggests that covector A 
should be regarded as an analog of the wave vector (lU, k) 

specifying the velocity and direction of a moving wave. A 
concrete profile of a simple wave is stated explicitly by initial 
data. However, there exists a certain arbitrariness connected 
with the freedom of choice of one function of one variable. 
The above remarks concern all the obtained simple waves. In 
this paper we apply a method developed in Refs. 4, 5, and 9. 

We have the following cases. 

A. Case I (Y1 - }..1-see the Appendix) 

The simple wave, according to the considerations of Sec. 
I, is reduced here to fulfilling conditions (3) and (4). Insert­
ing the simple integral element (20) into Eq. (3), we get 

dt/>o 1'\2 [ (e2 + 1 - v2 + $) h 
-=e,,~ cos T 
dR (v2 _e2 + 1 +$)1/2 

+ (e2 + 1 - v
2 

- $) . h ] sm T , 
(e2 -1- v2 + $)112 

(29a) 

(29b) 

(29c) 

where v2 = t/>~ + t/>~, A = (v2 - e2 + 1)2 + 4c2. We are in­
terested here in solving the system (7) with respect to the 
potential of the velocity field v = (t/>I' t/>2) and density 
p = exp( - t/>o). Now, let us assume that the expression in 
the square brackets in Eqs. (29b) and (29c) is a smooth 
function ofv2

, i.e., 
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cosh 1" sinh 1" -fi( 2) ------- + - V • 
(if-c2+ 1 +.[K)1/2 (e-l-v2+.[K)1/2 

(30) 

That means 1" = 1"(v2
) = 1"(R). 

In this case we are able to find a solution in a closed 
form. We introduce the quantity 1'0 = ;lh/J2' Now we divide 
Eq. (29b) [resp. Eq. (29c)] bY;1 (resp. ;2)' Then we sub­
tract both sides and finally we integrate and obtain 

1'0 = tan(c i - R), CI = const. (31) 

Then we introduce the quantity v2 =;~ +;~. Thus, by mul­
tiplying Eq. (29b) by ;1 and (29c) and ;2 and summing 
both sides, and then integrating we have 

i", dr 
F(if) = --= s..[2R + C2, 

a cr /(r) 

where a, C2 = const. 

(32) 

Now we assume there exists an inverse function G of F, 
such that 

G(F(r») = r, r>O, 

and we get 

v2 = G(s), where s = S,.f2R + c2• (33) 

Function G is an arbitrary non-negative function and it 
obeys the equation 

dG =(dF)-1 =/(G(s»). 
tis dv2 

(34) 

From equations (31) and (33) we can calculate 

;1 = €G 1/2(S,.f2R + c2)sin(c l - R), 

;2 = €G 1/2(s,.f2R + c2)COS(C I - R), ~ = 1. 
(35) 

Inserting (35) into (30) and simultaneously using relations 
(32) and (34) and then introducing G = e2H we obtain 

dH I 1 [ cosh 1" 

d; .=gJ2R+c2 =2c 0+e2H-e+$)1/2 

+ , sinh 1" ] 

(e - 1 - elH + $)1/2 
(36) 

ll. = (elH 
- e + 1)2 + 4c2

, 

where H is an arbitrary function of s. So, it is obvious that if 
function 1" is given, then function H is given as well, and vice 
versa. But function H is more convenient for parametrizing 
the simple element. Since we regard the quantity 1" as given, 
we are led to solve an ordinary differential equation with 
respect to H. Thus, from Eq. (36) we get 

eT =aI2.[K, 

where 

(37) 

and 

cosh 1" = a
2 

+ 4ll. , 
4a$ 

inh 
a2 - 4ll. 

s 1" = . 
4a$ 

(3S) 

As in Ref. 5 we search for a restriction of the function H. It is 
obvious that it must be 

(1) S (~~r + e2H + 1- e>O, 

(2) a>O. (39) 

Condition (2) is easily satisfied by assuming that dH I ds>O. 
If c = const, we may substitute c = 1 and both conditions 
are always satisfied [cf. Sec. II, Eqs. (9) and (0)]. Hence, 
the simple wave corresponding to the simple element (22) 
has the form 

v=€exp[H(S,.f2R +c2 )](sin(cl-R),cos(cl-R»), 

~=1. (40) 

Function R = R(t,xJ') is understood according to the 
expression (4) which means that the three-dimensional vec­
tor V R (t,xJ') is proportional to vector A I. Then 

R = 'I1(,fie [2 - e
lH 

+ $ (a2 + 4ll.) + 2 - e
lH 

- $ (a2 _ 4ll.)]t 
4a.[K (e2H +$)1/2 (_elH +$)1/2 

+ € exp H {[ 4v'2 ~~ sin(C I - R) - cos(c i - R) ]x + 4v'2[ ~~ cos(c i - R) + sin(c i - R) yD . (41) 

The density P is given by 

p =Po exp( - ;0)' Po = const, 

where 4>0 is the following: 

4>0= i
R c~' 

R. /i( 4 dH Ids + [2(S(dH Ids) 2 + elH - 1 - e)p/2)( (e2H - e + 1)2 + 4C)1/2 

X { e + 1 - e2H + (e
lH 

- c
2 

+ 1)2 + 4C)1/2 (16(dH)2 + 4 dH[2(S(dH)2 + e2H _ 1 _ e)] 112 
[e2H - c2 + 1 + «e2H - c2 + 1)2 + 4CW/2 ds ds ds 

+ 2e4H + 2c4 + 1 _ 4c2elH + se2H + se) + e - 1 - e2H - (e2H - c2 + 1)2 + 4C)1/2 
[e - 1 - e2H + (e2H - e + 1)2 + 4C)1/2] 

(42) 

X( 16(~~)2 + 4 ~[ 2( S(~~)2 + e2H - 1 - e)] 112 - 2e
4H 

- 2c4 
- 3 + 4Ce2H - 3e2H - Sc2)} . (43) 
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Function B is a function of s = 8vlR + C2 and is arbitrary (c = const) and dB / ds>O. 
Now we introduce the quantity 

c5=Ao +V·A., (44) 
which has a physical interpretation as a velocity of a moving wave with respect to the medium, whereas Ao is a local velocity of 
the wave. In our case c5 and Ao take the following form: 

Ao = ./2 [c
2 

- e
2H 

+ $ (a2 + 44) + 2 - el
H 

- $ (a2 _ 44)], 
4a$ (e2H + $)1/2 ( _ e2H + $)1/2 

c5 = Ao + exp(2H) {[ 4.j2: sin (cl - R) - cos(cl - R) ]sin(C I - R) 

+ [4.j2~~ cos(cl-R) +sin(cl-R) ]COS(CI-R)}. (45) 

B. Case .. (YI-AI.-a .. the Appendix) 
A simple wave corresponding to the simple integral element (24) may be found by integrating the following system of 

equations: 

df/J' d; = (2 - v2 + $)($ - V2)1/2 + (2 - v2 - $)(v2 + $)112, (46a) 

d~' ;. = ~j [2($ + 2)] 1/2, (46b) 

d~' 
;;. = ~i [2($ + 2)] 1/2, (46c) 

where v2 = ;j' + ;i2
, 4 = v4 + 4. We assume here thatthe velocity ofsound C = 1. By dividing both sides ofEqs. (29b) and 

(29c) and the integrating we get 

;i = cl;i, cl = coost. 
Now, we calculate the quantity v: 

v = [(1!(C2 - 2,[2R)2 - 2)2 - 4] 1/4, C2 = const. 

Hence we obtain 

;i = EC I [( 1 _2)2 _4]114 ;i = E [( 1 _2)2 _4]1/4 
~ (c2-2,[2R)2 '~ (c2-2,fiRY , 

Substituting (48) into (29a) and then integrating, we have 

;;' = _ 6[./2(C2 _ 2,[2R) + arctan 1 - (1 - 2(C2 - 2'[2R)2)1/2] . 
./2(C2 - 2,[2R) 

Thus a simple wave corresponding to the simple (24) has the following form: 

v = EC [( 1 _ 2)2 _ 4] 1/4 (Cvl), 
~ (C2 - 2,[2R)2 

p=poexp 6c./2(C2-2,[2R) + arctan - - 2- . [ 
1 (1 2(c 2,[2R)2) 1/2] 

./2(C2 - 2,[2R) 
The dependent variable R, i.e., the Riemann invariant, is given explicitly by the formula 

(47) 

(48) 

(49) 

(50) 

(51) 

([( 
1 [( 1 )2] 11)( 1 [( 1 )2] 112)112 R='I1 - -2 -4 -2- -2 -4 

(C2 - 2,[2R)2 (C2 - 2,[2R)2 (c2 - 2,[2R)2 (c2 - 2,[2R)2 

+ 4- -2 -4 - -2 -4 ( [( 
1 )2 ]112 1 )([( 1 )2 ]112 

(c2 - 2,[2R)2 (C2 - 2,[2R)2 (c2 - 2JiR)2 

X -2- -2 -4 {( 
1 [( 1 )2 ]112)112 

(c2 - 2JiR)2 (c2 - 2JiR)2 

( 
1 [( 1 )2 ]111/2} ) + - 2 + - 2 - 4 (CIX + y) , 

(C2 - 2,[2R)2 (C2 - 2,[2R)2 (52) 
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where \II is an arbitrary function of one variable. The solution (51) with condition (52) describes one-dimensional, nonsta­
tionary flow that goes in the direction (c I' 1). It is worth mentioning that the solution is defined everywhere except Ro = c21 
2v'l. The quantities Ao and 8 (the total velocity of the wave and the velocity of the wave with respect to the medium) are as fol­
lows: 

AO = c[( 1 _ [( 1 _ 2)2 _ 4]112)( 1 _ 2 _ [( 1 _ 2)2 _ 4]112)112 
(C2 - 2..[2R)2 (C2 - 2..[2R)2 (c2 - 2..[2R)2 (C2 - 2..[2R)2 

+ (4 _ [( 1 _ 2)2 _ 4] 1/2 _ 1 )([( 1 _ 2)2 _ 4] 112 + 1 _ 2)] 
(c2 - 2,j2R)2 (c2 - 2,j2R)2 (c2 - 2..[2R)2 (c2 - 2..[2R)2 ' 

(53) 

8=Ao +2E(cf + 1)1/2 -2 -4 -2- -2 -4 [( 
1 )2] 1I2{( 1 [( 1 )2] 112)112 

(c2 - 2..[2R)2 (c2 - 2..[2R)2 (c2 - 2..[2R)2 

+ -2+ -2 -4 ( 
1 [( 1 )2] 112) 1I2} 

(c2 - 2..[2R)2 (c2 - 2..[2R)2 . 

Moreover we have a restriction: 

(1!(C2 - 2..[2R)2 - 2)2 - 4>0. (54) 

This inequality may be easily solved and we obtain 

R>(c2 - 2)/2,j2 or R«2 + c2)/2,j2. 

C. Case III (Y3-AL.eee the Appendix) 

A simple wave corresponding to simple integral ele­
ments (25) may be found by integrating the following sys­
tem of ordinary differential equations: 

d~o = (c + 1 - v2 +..fK) + (c + 1 - v2 - /is.) 
dR 

(v2 _ c2 + 1 + /is.)1/2 . 
X SlD T, 

(c2 _ 1 _ v2 + /is.)1/2 

d~1 = - ~2 (v2 _ c2 + 1 + /is.)1/2 cos T 

dR c,j2 

where v2 = ~~ + ~L a = (v2 
- C + 1)2 + 4C. 

To solve the equations it is convenient to introduce a 
new variable,uo = ~1/~2' Forquantities,uo and v2 we obtain 
the following system of equations: 

dv
2 

[1 + (V2 - C + 1 + /is.)1I2. ] -= SlDT, 
dR c2 -1-v2 +/iS. 

(56) 

d (..fK-v2+c-l)I/2 
- arctan,uo = cos T, (57) 
dR c,j2 

where T is an arbitrary function of R. It is convenient to 
substitute 

v2 = e2H (58) 

and H parametrizes the simple element (25). 
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We find the restrictions for H. Substituting (58) into 
(56) we have 

..!..I (dH _ 2)(C - 1 - e
2H 

+ ..fK) I = I sin TI<1. 
2 dR e2H -c2+1+..fK 

(59) 

Using the relations between trigonometrical functions we 
calculate cos T and substitute into (57) 

d 
-arctan,uo 
dR 

(/is. - e2H + c2 _ 1)1/2 
=EI~----~----~-

c,j2 

X [+ _ ..!..(dH _ 2)2 (C - 1 - e2H + /is.) ] 1/2, 

4 dR (e2H 
- C + 1 + /is.) 

~ = 1. (60) 

The differential inequality (59) leads us to the solution for 
which the length of vector v is constant, i.e., 
H = Ho = const. Then by inserting quantity H = Ho into 
( 56) and (57) and integrating we get finally 

v = Cello(E2 sin(K(R) + cl),cos(K(R) + cl », 
P = Po exp[ - 2c(R - Ro)(2 - e2Ho )], 

[
e2Ho[ (e4Ho + 4)1/2 _ e2HO]] 

K(R) =EI (R -Ro), 
(e4Ho + 4)1/2 + e2Ho 

~ =~ = 1, (61) 

R = \II(2c(2 - e2Ho )t + elIo{[ 4E2 sin(K(R) + c l ) 

- Elello cos(K(R) + cI)]x 

+ [4 cos(K(R) + c l ) + EIE2el1o sin(K(R) + cI)]Y}). 

Quantities Ao and 80 are 

AO = 2c(2 - 2eHo ), 

8 = 2c(2 - e2Ho) + 4e2Ho, 

and C is the velocity of sound. 

D. Case IV (YI-A'-see the Appendix) 

(62) 

A simple wave corresponding to simple integral element 
(27) may be found by integrating the following system of 
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ordinary differential equations: (v4 + 4)1/2 _ V2)1/2 - Ji 
+ 2Jiln = 4.[2R + c2, 

«v4 + 4) 1/2 _ ';)112 - Ji 
(63a) 

C2 = const. (65) 

(63b) 
Function F is monotone and consequently it has an inverse 
function G. Thus we have 

(66) 
(63c) The domain of G is ( - 00, + 00) and its range is (0, 

+ 00). 
From equations (64), (66), and (63a) we get 

¢; = E2G l/2( 4.[2R + c2)sin(cI - R), 

where!1 = v4 + 4, ,; = ¢;2 + ¢!/, and we have assumed that 
the velocity of sound equals 1. By dividing Eq. (63b) by ¢; 
and Eq. (63c) by ¢2 and subtracting both sides of them and 
integrating, we obtain ¢2 =E2G

I/2(4J2"R +C2)COS(cl-R), (67) 

¢;/¢2 = tan(cI - R), CI = const. 

Then we calculate v2
• We get 

F(v2) = ~(V4 + 4) 1/2 _ V2)3/2 

(64) '/" - E '2 dR ' + C i
R (2 - G + (G 2 + 4)1/2) 

'1'0 - 2V~ Ro (G2 + 4)1/2 _ G)1/2 3' 

C3 = const, 

where G (F(x) ) = x and G is a function of 4J2"R + c2. 

( 
(V4 + 4) 1/2 _ V2)1I2 + 4J2"arctan 

2 
Thus the simple wave corresponding to the simple ele­

ment (27) is 

(68) 

( iR (2-G+(G2+4)1/2) ,) 
P = Po exp - E2cJi 2 1/2 1/2 dR . 

Ro (G +4) -G) 
The dependent variable R (i.e., Riemann invariant) is given in an implicit form 

•• ,([EIJi(2 - G + (G 2 + 4)1/2)] G 1/2{[2 . R ElJi ] R = "t" 2 1/2 1/2 ct + E2 sm(c l -) 2 1/2 1/2 - cos(CI - R) x 
(G + 4) - G) (G + 4) - G) 

+ [2COS(CI-R) 2 EI~ 1/2+sin(CI-R)]Y}), 
(G +4) -G) 

(69) 

where IIJ is an arbitrary function of one variable. The quantities Ao, {j, i.e., respectively a local wave velocity and velocity of a 
moving wave with respect to the medium, equal 

A _ cElJi(2 - G + (G 2 + 4)1/2) {j = ElJi(2 + G + (G 2 + 4)1/2) . 
0- (G2 + 4)1/2 _ G)1/2' (G 2 + 4)1/2 _ G)1/2 (70) 

E. Case V (Y4-A4......see the Appendix) 
A simple wave corresponding a simple element (26) can be found by integration of the following system of equations: 

d¢o = (c + 1 _ v2 -./K) (./K + v
2 
+ c

2 
- I )1/2 cosh 1" + (c2 + 1 _ v2 - ./K), 

dR ./K+v2-c2+1 

_'I'_I=-=n(./K-v2+c2_1)1/2sinh1"+2¢ll+ VI.JI.-V +C - cosh 1" , dl- ,/, [ (11K 2 2 1)112 ] 

dR cJi ./K+v2-c2+1 
(71) 

_'1'_2 = _'1'_1 (./K _ v2 + c2 _ 1)1/2 sinh 1" + 2¢2 1 + VI.JI. - V + c - cosh 1" , dl- ,/, [ (IK 2 2 1 )112 ] 

dR cJi ./K+v2-c2+1 

where v2 = ¢i + ¢i. !1 = (v2 - c2 + 1)2 + 4c2. 
We introduce new dependent variables v2 and Po = ¢1/¢2 and we get 

1 dv
2 

22[1+(V2-C
2

+1+./K)1I2 h] --= v cos 1" , 

2 dR c2-1-v2+./K 
(72) 

d (./K_V2+c2_1)1/2. 
- arctan Po = smh 1", 
dR cJi 

(73) 
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where l' is an arbitrary function of R. It is convenient to substitute 

,r = e2H. (74) 

Thus, the simple element (26) may be parametrized by function H instead of l' and we find restriction for H. By inserting (74) 
into (72) we find 

1 <cosh l' = ~ (dH _ 1) (c
2 

- 1 - e2H + {K)1I2. (75) 
2 dR e2H-c+l+{K 

Using relations between hyperbolic functions we calculate the quantity sinh l' and then substitute it into Eq. (73) to get 

-arctanlto= 1-- --2 , G = 1. d EI({K - e2H + C - 1)1/2 [ 1 (dH )2 ({K - e2H + c2 + 1) ]112 (76) 

dR c/i 4 dR ({K+e2H-c2+ 1) 

The differential inequality (75) leads to a solution for which the function H is constant, H = Ho = const. It means that the 
length of the vector v is constant. Thus by substituting H = Ho into Eqs. (71) and (76) and then integrating, we get 

l,6, = E2 tPo sin(K(R) + cll, G = 1, 
l,6i = tPo cos(K(R) + cll, 

where 

and 

K(R) =EI [e2H
o
({K_e

2Ho
+2)]I12 (R-Ro), t:J.=e4Ho +4, cl=COnst, 

({K + e2Ho) 

where C2 = const. 
Finally, we have 

v = c tPo(E2 sin(K(R) + cll,cos(K(R) + cll), 

P =Po exp{c[ (2 - e2Ho + {K)({K - e2Ho )/({K + e2Ho ) - (2 - e2Ho - {K)] (R - Ro)}, Po = const. 

The Riemann invariant R is given in an implicit form as 

R = '1'([ (2 - e2Ho - {K) - (2 - e2Ho + {K) {K - e
2Ho 

]ct 
{K +e2Ho 

+ tPo 4E2 sin(K(R) + cll - I cos(K(R) + cll x { [ 
e2Ho E ({K - e2Ho ) 1/2tPo ] 

{K + e2Ho ({K + e2Ho ) 1/2 

+ [4 e
2Ho 

cos(K(R) + cll + EIE2({K - e2Ho) 1/2 sin(K(R) + cII]Y})' 
{K + e2Ho ({K + e2Ho ) 1/2 

(77) 

(78) 

(79) 

(80) 

where 'I' is an arbitrary function of one variable. A local wave velocity and velocity of wave with respect to the medium are 
constant and given by 

Ao = C[(2 - e2Ho - {K) - (2 _ e2Ho + {K) ({K - e2
Ho

) ] , 
({K +e2Ho ) 

where c = const and it is the velocity of sound. 

F. Case VI (Ya-J..'-8ee the Appendix) 

(81) 

A simple wave corresponding to the simple element (28) may be found by integration of following system of equations: 

dl,6~ = EI/i(2 - ,r + {K), G = 1, 
dR (v2 + {K)1/2 

dl,6, = -l,6i + 2l,6, EI/i , 
dR (,r + {K)1/2 

(82) 

dl,6i = l,6, + 2l,6i EI/i , 
dR (v2 + {K)1/2 

where t:J. = v4 + 4, v2 = l,6,2 + l,6i2. 
We assume that the velocity of sound equals 1. We introduce new variables Ito = l,6, / l,6i and,r. 
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As before we integrate equations for these variables and we get 

Ito = t/>;It/>; = tan(c1 - R), c1 = const, 

( 
(V4 + 4) 1/2 V2)112 

F1(v2) = - 2 arctan 2 - + (2(v4 + 4)1/2 - V2)1/2 

+ In = 2El..fiR + c2, c2 = const. [ 
(V4 + 4)1/2 _ V2)1/2 -..fi] 

«v4 + 4)1/2 _ V2)1/2 +..fi 

Function Fl is monotone. So, in the interval (0, + ex» it possesses an inverse function G1 such as 

G1(Fl(X») =X. 

We get 

v2 = G1(2E1..fiR + C2)' 

From (83), (85), and (82) we have 

t/>; = E2 G V2(2E1..fiR + c1)sin(c1 - R), 

t/>; = E2G 1/2(2El'f2R + c1)COS(C I - R), 

i
R (2 - G + (G 2 + 4)1/2) t/>' - E ..fi dR ' + C 

0- 1 Ro (G2+4)1/2+G)1/2 3' 
C3 = const, 

where the function G1 is given by a transcendent equation 

(2(~ + 4)1/2 _ G)1/2 + In [«Gf + 4)112 - G1)1/2 -..fi] _ 2 arctan( (Gf + 4)1/2 - G1)1/2 = 2En/2R + c
2
. 

(Gf + 4)112 - G1)1/2 +..fi 2 

Thus a simple wave corresponding to the simple element (28) is 

v = E2G :12 (2E1..fiR + cz)(sin(c1 - R),cos(c1 - R»), 

p=p exp -u..fi dR . ( i R (2 - G1 + (Gf + 4)1/2) ,) 

o 1 Ro (Gf + 4)1/2 + G1)I/Z 

The dependent variable R, the Riemann invariant, is given in implicit form as 

where '11 is an arbitrary function of one variable. 

(83) 

(84) 

(85) 

(86) 

(87) 

(88) 

(89) 

QuantitiesAo, 8, which are, respectively, the local wave velocity and the velocity of wave with respect to the medium, are 
given by 

A = CE1..fi(2 - G1 + (Gf + 4)112), 8 = E1..fi(2 + G1 + (Gf + 4)1/2) . 
o (C1 + (Gf + 4)1/2)1/2 (G1 + (Gf + 4)1/2)1/2 

(90) 

The above-described simple waves are the basis for searching for a wider class of solution, the so-called double waves and 
multiple waves. The superpositions of this type may be very interesting from the physical point of view and they will be 
considered in future papers. 

It is interesting to notice that our calculations can be extended to the three-dimensional case. However, it will cause very 
tedious and laborious algebra. It seems that the assumption of the constancy of the velocity of sound can be abandoned. 
However, we cannot use some mathematical tricks in the above calculations and probably we cannot get compact results. 
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APPENDIX: SIMPLE ELEMENTS 
The covectors ,.t are 

Pi2[ (e
2 + 1 - v

2 
+.,[K) h + (e

2 + 1 - v
2 

-.,[K) ·nh] 
ev~ cos ". Sl ". 

(v2_e2+ 1 +.,[K)I12 (c2_1_v2+.,[K)1/2 

_ ¢2 + 2c..j2 ¢1 [ cosh". + sinh ".. ] 
(if-e2+1+.,[K)1/2 (c2_1_v2+.,[K)1/2 ' 

¢1 + 2c..j2 ¢2 [ cosh". + sinh". ] 
(v2_e2+ 1 +.,[K)1/2 (c2_1_v2+.,[K)1/2 

(

C2 + 1 - v2 + .,[K)(.,[K - v2 + c2 - 1)1/2 + (c2 + 1 _ v2 - .,[K)(v2 _ e2 + 1 + .,[K)1/2) 
,.t2= 2¢1[(.,[K-V2+C2_1)1/2+(V2-c2+1+.,[K)1/2] , 

2¢2 [(.,[K - v2 + e2 - 1) 1/2 + (v2 - c2 + 1 +.,[K) 1/2] 

(c2 + 1 _ v2 + .,[K)(.,[K - v
2 
+ c2 - 1 )112 cosh r + (c2 + 1 - if -.,[K) 

.,[K+v2-c2+1 

- ¢2 (.,[K _ v2 + c2 _ 1)1/2 sinh". + 2¢1[1 + (.,[K - v
2 
+ c

2 
- 1)112 COSh".] , 

c..j2 .,[K+v2-c2+ 1 

iJ.... (.,[K _ v2 + c2 _ 1) 1/2 sinh". + 2¢2[ + 1(.,[K - )if + c
2 

- 1 )112 COSh".] 
c..j2 .,[K+v2-c2+ 1 

Ee..j2(c2 + 1 - v2 + .,[K) 

(v2 _ e2 + 1 + .,[K)1/2 

- ¢2 + 2¢1 EC..j2 , 
(v2 - c2 + 1 + .,[K)1/2 

4>1 + 2¢2 EC..j2 
(if - c2 + 1 + .,[K)1/2 

where". is an arbitrary function of ¢/J i = 0,1,2, and 

if = ¢~ = ¢L a = (v2 - c2 + 1)2 + 4¢. 
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Some rigorous results concerning spectral theory for ideal MHO 
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Spectral theory for linear ideal MHO is laid on a firm foundation by defining appropriate function 
spaces for the operators associated with both the first- and second-order (in time and space) 
partial differential operators. Thus, it is rigorously established that a self-adjoint extension of 
F(s) exists. It is shown that the operator L associated with the first-order formulation satisfies the 
conditions of the Hille-Y osida theorem. A foundation is laid thereby within which the domains 
associated with the first- and second-order formulations can be compared. This allows future 
work in a rigorous setting that will clarify the differences (in the two formulations) between the 
structure of the generalized eigenspaces corresponding to the marginal point of the spectrum 
ill =0. 

J. INTRODUCTION 

The purpose of this report is twofold: (1) to offer to the 
applied mathematician and theoretically inclined math­
ematical physicist a self-contained presentation of some rig­
orous theorems about the operators of linear ideal MHO 
(linearized Lundquist equations) in a bounded toroidal do­
main, and (2) to hopefully attract experts on spectral theory 
and hyperbolic equations to pitch in a hand towards resolv­
ing some of the difficult open problems remaining concern­
ing the spectrum of the linearized operators and their con­
nection with the time evolution of the first-order Lundquist 
equations, by recasting these problems precisely in the con­
text of the appropriate functional spaces. 

Concretely speaking, this report was motivated by its 
having been pointed out 1 that there exists an apparent gap in 
the literature on the linearizedF(s) introduced by Bernstein 
et af.,2 which has long been known to be symmetric, as to 
whether a self-adjoint extension of the latter exists. As the 
author realized this result was an easy extension of his pre­
vious work,3 he set out to exposit this in the present report. 
However, at that juncture his attention was drawn to a long 
unresolved problem introduced by Grad, as to the relation of 
the infinitesimal generator and spectrum of the original first­
order Lundquist equations with that of the second-order sys­
tem obtained therefrom by Bernstein et af.2 Thus he was 
motivated to also present herein a self-contained proof of the 
existence of a semigroup solution to the linearized Lundquist 
equations and to thereby provide a concrete and rigorous 
setting within which the semigroup generated by them could 
be compared to the evolution equation associated with F(s)· 
Some preliminary remarks as to the comparison of the do­
mains of the first- and second-order operators are made at 
the end of this paper. 

We now pass to a more detailed account of what will be 
done in this report and stop along the way to survey the 
known results. 

aJ This work was completed while the author was at the Worcester Poly­
technic Institute, Worcester, Massachusetts 01609 and the Massachu­
setts Institute of Technology, Cambridge, Massachusetts 02139. 

The Lundquist equations, or ideal MHO equations, 
constitute a first-order "quasi" symmetric hyperbolic sys­
tem,4 supplemented by the condition V-O = o. We say "qua­
si" because (see Sec. IV C), in general, it is only after the 
condition V·O = 0 is imposed that the coefficient matrices 
are symmetric. In the context of nuclear fusion research they 
have traditionally been used to model the evolution of a plas­
ma in a toroidal shell. They are supplemented and coupled 
with a set of pre-Maxwell equations when the plasma is sur­
rounded by a vacuum region. If, however, the plasma is al­
lowed to extend to the boundary, one obtains a so-called 
characteristic mixed initial boundary value problem. For the 
nonlinear case, even locally in time, no proof of the existence 
of solutions exists at the present time, and has appeared only 
very recently for the characteristic mixed initial boundary 
value for the Euler equations of compressible fluid dynamics 
in Ref. 5. 

A linearization of the nonlinear equations around an 
equilibrium is beset with many difficulties since solutions to 
the equilibrium equations almost certainly do not exist in the 
absence of symmetry, as was convincingly demonstrated by 
Grad.6 Therefore the following account, which deals with 
these linearized equations, will only be well founded for 
asymmetric perturbations of a symmetric equilibrium and 
needs, as does all the literature on the subject, to be carefully 
interpreted in the case of asymmetric equilibria. For an in­
teresting discussion of these points see Ref. 1. 

We would like to point out that for axisymmetric pertur­
bations of axisymmetric eqUilibria an investigation along 
rigorous mathematical lines of the spectrum of F(s) has 
been carried out in Refs. 7 and 8. Also a comprehensive 
survey paper of results on the spectrum due to Hameiri has 
been carried recently in a paper by the latter.9 

In 1958, Bernstein et af.2 derived, by introducing a La­
grangian displacement S in the original first-order Lund­
quist equations, a second-order symmetric operator F(s) 
whose non-negativeness allegedly provided necessary and 
sufficient conditions for stability. It was soon noted, how­
ever, due to the presence of essential spectrum extending to 
and including the origin, that F(s) >0 would be associated 
with nonexponential growth of the solution.1O Goedbloed 
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and Sakanakall then formulated a modified energy princi­
ple, also referred to as the u-stability principle, which, by 
avoiding difficulties at the origin, truly does pc<?vide n~ces­
sary and sufficient conditions for a solution of PS = F(s) to 

be u-stable, which means that IIHlb<c exp at. This u­
stability principle was put on a firm mathematical founda­
tion in Ref. 3. There, existence of solutions of pt = F(S) in 
the form of a evolutionary variational problem following the 
work of Lions-Magenes,12 was also established. A second­
order semigroup approach to establishing existence for the 
same equations was outlined in Ref. 13, but all details have 
not appeared as of this writing. 

It is well known that a complete resolution of an opera­
tor through its spectrum exists only for self-adjoint opera­
tors through the so-called spectral theorem. For operators 
that are merely symmetric but possessing no self-adjoint ex­
tension, the spectral problem is not well posed and its con­
nection with the time evolution of the solution of the asso­
ciated "generalized wave equation" is hard to interpret. 

In the first part ofthis report we will show how machin­
ery largely developed in Ref. 3 can be used to establish the 
existence of a self-adjoint extension of F(s) + AI for an ap­
propriate A. As far as the author can tell without adding a 
multiple of the identity to F(s) it is indeed not possible to 
find a self-adjoint extension. Moreover, due to the boundary 
conditions on S, the appropriate multiple must be deter­
mined so as not only to make F(s) positive but make its 
associated quadratic form coercive over a certain norm. Of 
course, loosely speaking, the spectrum of F(s) can be 
thought of as merely a translation of the spectrum of 
F(s) + AI. We will investigate the self-adjoint extension of 
F(s), both in the context ofthe so-called diffuse pinch and 
sharp boundary models. 

As pointed out by Gradl4 and more recently in Ref. 7, 
the second-order formulation in terms of F(s) and the origi­
nal formulation as a first-order system are not equivalent. 
Indeed the latter is the more fundamental and results about 
the former must be interpreted in that light. For complete­
ness and as this problem was an important motivation for 
writing this report we provide a brief account. 

The original first-order system can be written following 
the notation in Ref. 1: 

(1) 

vt = L 2v, (2) 

where U is the fluid velocity, v = (p,B), scalar pressure and 
magnetic field. Introducing a Lagrangian displacement 
through 

a 
- s(ro,t) = v (ro,t) , (3) at 

we then find by integrating that 

v(ro,t) = L 2(s(rO,t») + (v(ro,O) - L~(ro,O»). (4) 

Thus if 

v(ro,O) - L~(ro,O) = 0, 

we obtain from (1) 

Stt =LIL~=Fs, 
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(5) 

(6) 

which is the second-order formulation of Bernstein et al.2 To 
illustrate (but not exhaust) the difficulties in passing from 
( 1) and (2) to (6), note that (3) is artificial. An important 
class of initial perturbations referred to in Ref. 1 as the anho­
lonomic ones consist precisely on those (uo,vo) that are not 
accessible from an equilibrium through a smooth displace­
ment. 

Another approach would be to differentiate (1) and 
substitute from (2) to obtain 

V tt = L 1L 2v = Fv. (7) 

However,1 the only initial values of U'U t that are relevant are 
those for which we can determine v from the relationship 

(8) 

In this report we hope to make a step towards the better 
understanding of the difference between the first- and sec­
ond-order formulations by defining domains for both that 
we conjecture are as close as possible. This is so, as we will 
see, because the domain we will introduce for the second­
order formulation is the domain of the square root of 
F(s) + J..,[. 

Further remarks could be made about the special diffi­
culties in comparing the spectrum at the origin for the first­
and the second-order formulations. For this we refer the 
reader to Ref. 1. 

In the second part of this report we discuss the first­
order system. Frequently this system is coupled with pre­
Maxwell equations in a vacuum region surrounding the plas­
ma. If however, the plasma is allowed to extend to the walls 
(diffuse pinch), one obtains an initial boundary value prob­
lem with characteristic boundary of constant multiplicity. A 
general theory does exist for such problems in the linear case, 
see Ref. 15 for an up-to-date account and recent develop­
ments. However, the boundary conditions Bon = 0 on 8[1 

turns out not to be "admissible" in the general theory. So a 
slight modification ofthis theory is needed. We discuss this 
in a general way in Sec. IV C. 

We will give here a self-contained proof of the existence 
of a linear semigroup solution to the characteristic initial 
boundary value problem assuming only the Hille-Y osida 
theorem. 16 The assumptions on the coefficients we will make 
will not be the most general possible. We note that the condi­
tion V·B = 0 for the system of Lundquist equations is non­
standard. For a smooth enough solution it will be satisfied 
for all time if satisfied initially. However, for a clear under­
standing of the relationship of the spectral problem with the 
time evolution of the system it is important to include it in 
the domain of the infinitesimal generator. 

An advantage of a semigroup solution is that it gives a 
framework where we can appeal to the so-called spectral 
mapping theorems to relate the time evolution of the solu­
tion through the spectrum of the associated semigroup to the 
exponentiated spectrum of its infinitesimal generator. This 
last remark is especially relevant for the Lundquist equa­
tions linearized around a nonstatic equilibrium. There, too, 
is a second-order formulation of the stability problem, 17 
however, in that case it is not a self-adjoint one and this 
further complicates an assessment of the relationship of the 
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study of the spectrum of the second-order operators with the 
time evolution of the first-order system. 

II. EQUATIONS AND BOUNDARY CONDITIONS 

Linearizing the Lundquist equations2 of ideal MHD 
around a static (u = 0) equilibrium that satisfies 

VPo = (VXBo) XBo, (9) 

V·Bo=O, 

yields the system 

av 
(1) Po-= -Vp+VxBoXB+VxBxBo, 

at 

aB 
(2) - = Vx (vXBo), 

at 

(3) ap = - YPoV.v - v.VPo 
at 

(4) V·B = 0, 

for the variables 

( 10) 

(11 ) 

(12) 

(13) 

(14) 

Here we have denoted equilibrium quantities with the sub­
script O. 

When the plasma region Op extends to the wall (diffuse 
pinch) the boundary conditions for the equilibrium equa­
tions are 

Bo·n = 0 on 150p = 150, 

p = c on 150p , 

and, for the first-order system, 

B·n = 0 on 150, 

v·n = 0 on 150. 

(15) 

(16) 

(17) 

(18) 

When the plasma region does not extend to the wall 
(sharp boundary model) in the vacuum region Ov surround­
ing the plasma, we introduce a vector potential for B, 
VXA = B, with the gauge condition V·A = 0 (see Ref. 18 
for details), and then obtain in Ov the equations 

VXVXA =0, 

V.A=O, 

and the boundary conditions 

no·A = noX (vxBg), 

- YPoV·v +Bg·(Vx (vxBg) + v·VBgl 

=B~·(VXA +v·VB~), on rp 
and 

nxA =0 on rv' 

(19) 

(20) 

(21) 

(22) 

(23) 

For the unique determination of A in a toroidal region we 
must also impose a flux condition 

f A.n ds = y(t). 
Jr. 

(24) 

From these equations we may derive, by introducing a La­
grangian displacement 5 satisfying 
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(25) 

the equations 

a2s 
Po at 2 = V (YPoV·s + s·VPo) + VXBoXVx (5 XBo) 

-B xVxVx (5 XBo) = :F(s), in Op, 

VxVXA = 0, in 0v' 

V·A = 0, in 0v' 

- YPoV·s + Bg.(Vx (5 xBg) + s·VBgl 

=B~·(VXA + s·VB~), 

noXA = ( - n·s)B~, on rp , 

noXA = 0, on r v ' 

and the flux condition 

f A.n ds = u(t). 
Jr. 

(26) 
(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

As described in Refs. 3 and 18, these equations may be solved 
in the case of an inhomogeneous flux as in (32), by first 
solving them with a homogeneous flux 

f A.nds=O, (33) 
Jr. 

and then adding to A a solution A ' of the system 

VXA' = 0, (34) 

V·A'=O, 

noXA' = 0, on rpurv' 

f A '·n ds = u(t). 
Jr. 

In the case of the diffuse pinch the equations are 

(35) 

(36) 

(37) 

a2s 
P at 2 = F(s), (38) 

s·n = 0, on rp. (39) 

We now associate, as in Ref. 3, with the operator F(s) a 
bilinear form 

a(s,t) = f {YP(V·s)(V·t) + Vx (5 XB)·Vx (t XB) Jnp 

- VxB xs·Vx (t XB) - (v·s) (t·Vp)}dx 

+ i VXA·VxA d·x 
n. 

- f (s·n) (t.n) 
Jrp 

xn.v~+ ~ IBb'I- ~ IBtl)ds. (40) 

We assume n.V(p +! IBg'I-IBtl»O. Here A, A are de­
fined in terms of s,t by solving the boundary value problem 
(27) and (28) subjectto the boundary conditions (30) and 
(31) and the flux condition (33). 

In the case of the diffuse pinch, the last two terms in the 
form are absent since s·n = t·n = 0 and the unique solution 
of the boundary value problem defined just above for A and 
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A is zero. We will hereafter refer to the diffuse pinch as case 
1, and the sharp boundary as case 2. 

III. SELF-ADJOINT EXTENSIONS 

In this section we will establish that the operator F(S) 
defined by (26) has a self-adjoint extension. The nature of 
this extension is different in an essential way according as to 
whether we are in case 1 (diffuse pinch) or case 2 (sharp 
boundary). In both cases the extension we will use is the so 
called Friedrichs extension. 

In case 1, the following general theorem (see Theorem 
X23, p. 177 of Ref. 19) will be needed. 

Theorem 3.1: Let A be a positive symmetric operator 
and leta( ¢',~) = (¢'.A~), for ¢',~eD(A). Then a is a closable 
quadratic form and its closure a is the quadratic form of a 

A A 

unique self-adjoint operator A. The operator A is a positive 
extension of A, and the lowxr bound of its spectrum is the 
lower bound of a. Further, A is the only self-adjoint exten­
sion of A whose domain is contained in the form domain ofa. 

A few general remarks are in order about how we apply 
this theorem. First of all, in our case A = F(S) is not neces­
sarily a positive operator. To make it positive we must add a 
multiple A of the identity to F(S)' Although we then satisfy 
all the conditions of the theorem, the closure of the form 
domain for 

(41) 

may not be such that all its elements satisfy S·n = 0 on 80. 
As we will see in the sequel, however, there is a value of A 
sufficiently large (the one that makes the associated qua­
dratic form coercive over a certain norm) for which the form 
domain of aA (5,5) does satisfy the boundary condition. 
Thus according to the general principle expounded in the 
theorem for this A, the associated closed s.a. operator 
A 

F(s) + AI, does incorporate the boundary condition 
S·n = 0 in its domain. 

Furthermore this theorem makes clear how we can jus­
tify in a rigorous way a vast physics literature that implicitly 
assumes that a lower bound for the quadratic form yields a 
lower bound for the spectrum of F(S), a result that is not 
true for all extensions of F(S). This theorem also is connect­
ed with the author's being able to justify in Ref. 3 the so­
called modified energy principle. There, solutions to an asso­
ciated evolutionary variational problem were constructed 
precisely in the form domain of a A • 

Case 2 (sharp boundary) is unorthodox. Indeed a priori 
it is not clear that the natural domain one would like to 
associate with F(S) is not empty. This natural domain is 

{SeHl(O): F(s)EL 2(0), rpoV,s +BP(Vx (5 XBg) 

+5·VBg)=B~,(vxA+s·VB~)}, on rp. (42) 

HereA is defined in termsofSbysatisfying (27), (28), (30), 
(31), and (33). Bernstein et al. 2 give a heuristic argument 
that this domain is not empty. Essentially they argue that as 
we do not alter A by changing the tangential component of 5 
on r p alone, so we may adjust this tangential component in 
order that (29) is satisfied. The justification of this argu­
ment, involving as it does the solution of a partial differential 
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equation on a closed toroidal surface, does not appear to be 
straightforward. 

The method we use to get around this difficulty is the 
following. With no a priori mention of the operator F(S) we 
introduce the quadratic form a (5,5) + A (S,t) through 
(40). The second half of the theorem quoted above then 
insures us of the existence of a self-adjoint extension FA (5) 
+ AI(S), which by general principles is defined on a dense 
subs~t of L 2 SOp) contained in the form domain of 
a (5,5) + A (5,5). By the nature of this extension we have 

_ _ A _ 

a(s,s) + A (5,5) = (FA(s) +AS,S). (43) 

On the other hand, Green's theorem implies 

a (s,t) + A (S,t) 

= (FAS + AS,t) + J (t·n)L(S.A )ds = 0, (44) 

whereL(S.A) is given by (29). As mentioned above, the set 
of t 's satisfying (44) are dense in L 2 (Op ), hence in 
~ I (Op ). Thus the associated restrictions to the boundary 
(S·n), are clearly dense in L 2 (Op) by the trace theorems. 

This then implies L (5 .A) = O. Hence by this indirect 
route we have established that there exist a dense set of 5 in 
L 2( 0p), which is in the domain defined by (42). 

In the following we show that the conditions of the 
theorem are satisfied by the bilinear form (40), and that the 
form domain incorporates the relevant boundary condi­
tions. Many details are omitted and can be found in Ref. 3. 

Case J (diffuse pinch): In the following all derivatives are 
taken in the sense of distributions. The domain ofF - (5) we 
take to be 

D -( F) = {SeH 2(O) IS·n = 0 on 80}. (45) 

We introduce the form core 

W-={SeHl(Op-)' S·n=O on rp}, (46) 

with the norm 

and define 

W={S·n=O on rpIS,V·S,VX(SXBg)EL2(Op)}. (48) 

It is easily seen that on D -( F ),a(s,t) = (F (5),5). A 
standard density argument 12 allows us to show {C I (Op ), 
S·n = 0 on rp}is dense in W- and W. Also a (S,t) is sym­
metric on W - and there exist constants c l,c2,8 (c I,C2.A) s. t. 

(49) 

see Ref. 18. 
The important point to check is that a(s,t) is a closed 

form that is equivalent to be completeness of W in the W 
norm defined in (47). This essentially reduces to checking 
that the boundary condition s·n = 0 on rp makes sense for 
elements in W. This is an easy consequence of the inequa­
lity12 

(50) 

We may now apply Theorem (3.1) to show thatF A- (5) has 

Peter Laurence 1919 



                                                                                                                                    

a self-adjoint extension to F;. (S) with domain given by 

D(F;.) = {SEW I F (S)EL 2(O)}, (51) 

and thatonD( F;.), a(s,t) = (F;. (S),t). Here we have de­
fined 

(52) 

Case 2 (sharp boundary): We first introduce some rel­
evant function spaces, in the notation of Ref. 3. Recalling the 
Hodge decomposition theorem, if V = (Vl>V2,V3 )EL 2(0), 
then there exists 

VIEVI, V2EV2, V3EV3, 

such that 

(53) 

V= VI + V2 + V3 (54) 

or 

(55) 

and the decomposition is orthogonal, where 

VI = {V~I~EB6(O)}, (56) 

V2 = {vxvlvEL 2 (rot) (O)}, (57) 

L 2 (rot) (0) = {VEL 2(0) IVxvEL 2(O)}, (58) 

V3 ={hIVXh=0, V·h=O in 0, nXh=O on OO}. 
(59) 

All derivatives above are taken in the sense of distributions. 
We define W as the closure in the W norm of 

W- =HI(Op), where 

lis lIiv = r {yp(V'S)2 + IVx (S XBg) 12 + A Is 12}dx Jop 

+ Lv IVXA 12. 

HereA is defined in terms of Sby solving the boundary value 
problem 

VxVXA = 0, (60) 

V·A = 0, (61) 

nXA = (-n's)B~, on rp , 

nXA = 0, on rv ' 

r A'n ds=O. Jrp 

(62) 

(63) 

(64) 

The fundamental properties of Ware given in Theorem 
4.3 of Ref. 3, which we recall here. 

Theorem 3.2: W is a Hilbert space of a vector-valued 
function S for which 

(1) VX(SXBg), V'S, sEL 2 (Op), 

(2) (s.n)B gEH -1/2(r
p

)' 

and (3) the boundary value problem defined by (60) - ( 64 ) 
for A has a solution for which AEL 2 (rot) (0. )nV2 (Ov)' 

For the proof, see Ref. 3. Here we would like to give an 
elaboration of condition (3). However, we note, as will be­
come clear from this elaboration, that (3) is actually a re­
finement of (2). 

Consider the boundary value problem (60)-(64). In 
Theorem 4.1 of Ref. 3 the inequality 

1920 J. Math. Phys., Vol. 27, No.7, July 1986 

IIA IIz<c{IIVXA 112 + IInxA IIH- 1I2(r)} (65) 

was established forAEL 2(rot) (O)nV2(O), whereOisa pos­
sibly multiply connected domain. An inspection of the proof 
of this theorem reveals that if in addition 

VxVXA=O, 

then 

(66) 

This follows from the fact that if g is defined as in that 
theorem by 

VXVXg=j, 

V.g=O, in 0, 

nxg=O, on rpurv' 

r g.n ds=O, Jrp 

then 

L VXA.Vxgds = 0, 

(67) 

(68) 

(69) 

(70) 

(71) 

and we refer the reader to the proof of Theorem 4.1 to see 
how this last equality implies (66). 

A consequence of (66) is that a solution of (60)-(64) 
exists if (n·S)B ~ and therefore n XA is inH -1/2(r.). Here 
the condition 

r A.nds=O 
Jr. 

must be interpreted in the sense of duality 

(A,n)H-1I2(r.>xHII2(r.> = O. (72) 

Note, to write (72) we have used again theresult,AEL 2(0), 
V·A = O=>A ·nEB - 1/2 (r pur. ). However, the conditions 
nXAEB- 1I2(rp ), nXA = 0 on rv do not suffice to ensure 

VxAEL 2(Ov)' (73) 

Thus what characterizes W is that s·n lies in a subset of 
H- 1/2(rp ) for which (73) is satisfied. Whether this last 
fact entails further regularity for S in r p and/or S on r p is an 
open problem. 

We can now apply again Theorem 3.1 to define the do­
main of the self-adjoint operator F;. (s) by 

D( FA) = {sEWla(s,t) = (F;. (s),t)}· 

The theorem guarantees that this domain is dense in L 2 (0). 

IV. FIRST-ORDER LUNDQUIST EQUATIONS: 
SEMIGROUP SOLUTIONS AND SPECTRAL MAPPING 
THEOREMS 

To begin this presentation we make a change of varia­
bles that puts the Lundquist equations in canonical symmet­
ric hyperbolic form 

a 
u, = LA; -u +Bu, 

; ax; 
(74) 

u is an n-vector and theA; are symmetric n-n-matrices. We 
do this in the following subsection. 

Peter Laurence 1920 



                                                                                                                                    

A. Quaslsymmetrlc hyperbolic form of equations 

Let P = (pis) lIy and 

P = (YPO)-1/2p, 

V = (Po) 1/2v. 

(75) 

(76) 

In the new variables the Lundquist equations linearized 
around an arbitrary equilibrium (static or nonstatic) can be 
rewritten as 

- - rPo V- + Y PoPo -V 
( 

112)112 ( )-1/2 
Vt - - -- p P Po 

Po 2 
+ (PO)-1/2VXB XBO+Po- I12VXBoXB 

V- I - V P V - V - Vo' v + 2po VVo' Po - p~2 Vo' Vo - V· VO' 

Bt = Po- 112V X (vXB) - !Po- 3/2[VpOX (vXB)], 

Pt = - (YPo) 112 V·v + ~ (YPrP~) 1/2v.VPo 
Po 2 

- (YPrPO)-I/2V'VPO 

- Vo·Vp - I 1/2 vo,VPo, 
2( PoPo) 

St = - Po- I12v.VSO - vO'VS, 

with principal part 

( )
112 

vt = - :0 Vp +Po- I12VXB XBo + ... , 

Bt =Po- I12VX(vXB), 

(
YP )112 Pt = - _0 V·v+"" 
Po 

St = -vo'VS, 

To this set of equations we must add the condition 

V·B=O. 

(77) 

(78) 

(79) 

(80) 

(81) 

(82) 

(83) 

(84) 

(85) 

In this form with the help of a few vector identities the 
symmetry of the A; is easily ascertained directly when 
Vo = O. We next discuss in a general way the relationship of 
the semigroup solutions we will define with the spectrum of 
their infinitesimal generators. The discussion will apply 
whether the underlying equilibrium state is static or nonsta­
tic (with flow). We hereafter drop the tilde in the perturbed 
quantities. 

B. Remarks on spectral mapping theorems 

The assumed smoothness of Po, Po, and Bo allow us to 
define all the spatial differential operators arising in (74) in 
the sense of distributions. Let 

and let 

a Lu =A; -u +Bu, 
ax; 

where the derivatives are taken in the sense of distributions 
and A; and B are determined by (77 )-( 80). 
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A natural definition for the domain of L would be 

D(L) = {ue{L 2(O)}8: V·B = 0, Lue{L 2(0)P} . 
v·n = 0 on 80, B'n = 0 on 80 

(86) 

We hereafter will use the shorthand ueL 2 (0) instead of 
ue{L 2 (O)}B. On this domain, however, we conjecture thatL 
is not a closed operator. This is due to the failure in general of 
the condition 

B' +B* -~A;#O. 
2 ax; 

(87) 

Thus we will instead consider 

L+XI, 

where X is determined so as to ensure that L + XI is a closed 
operator if X > Ao. It can also easily be shown that for the 
proper choice of Ao all the domains of the associated L + XI 
are the same. Thus, for the purposes of this preliminary dis­
cussion, without loss of generality, we fix a particular X > Ao. 

L + XI will be shown to be the infinitesimal generator of 
a semigroup denoted Tx (t). Formally 

e(L+XI)t = Tx (t) = ~t~t = ~T(t), (88) 

where T(I) is the solution to original system (74). Thus for a 
particular initial data Uo the solution of 

is 

a 
U t + 2: A;-u+Bu=O, 

ax; 

u(x,O) = Uo 

(89) 

(90) 

u(x,t) = e-XtTx (I)uo, (91) 

for any uoeD(L + XI). We recall, as is well known,16 that 
the set of A 's in the spectrum of T(t) = e - XtTx (t) are con­
tained in a strip in the complex plane, u _ < Re A < u +. Once 
we have shown that L + XI generates the semigroup Tx (t), 
the spectral mapping theorems (see Ref. 20, pp. 44-48) will 
guarantee that the following set inclusions hold: 

{eU(L+XI)t}Cu(Tx (I»), (92) 

therefore 

e-Xt{e(U(L + XIJt}Ce -Xtu(Tx (t»), (93) 

but 

sup eu(L + XI)t< II Tx (t) II. (94) 
(jeu(L + XI) 

And 

sup{IA II Aee-Xtu(Tx(t»}<e-XtIITx(t)II, (95) 

and therefore 

sup_ e-XteU(L+x/)t<e-XtIlTx (t)II. 
oe(L +A.I) 

(96) 

Equality holds, for instance, when Tx is self-adjoint, which it 
is not in our case. 

The foregoing inclusions are the only general statements 
that can be made in an abstract way as to the relation of the 
spectrum of the infinitesimal generator and the time evolu­
tion of the associated semigroup. They show that we cannot 
expect to get from the spectrum of the infinitesimal gener-
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ator necessary and sufficient conditions for stability. This is, 
moreover, not due to the lack of regularity of the semigroup 
solution as the problem exists even for analytic semi­
groups. 21 

The spectral mapping theorems do, however, justify, 
through (96), the procedure of deriving necessary condi­
tions for stability or, put a different way, sufficient condi­
tions for instability from the knowledge of the range of the 
spectrum of L + XI. 

When linearizing around a static equilibrium we can say 
a good deal more, at least in a heuristic fashion, about the 
time evolution of the Lundquist equations by considering the 
spectrum of the self-adjoint second-order operator F(s), see 
(26), which arises when we integrate the system (2) so as to 
obtain an equation for S alone. Heuristically, we would ex­
pect that any exponential growth of the semigroup T(t) 
would correspond to a negative element in the spectrum of 
F(s). However, there are difficulties in justifying this argu­
ment,as we pointed out in the Introduction, which we will 
not resolve here beyond the comments made at the end of 
this work as to the comparison of the domains of F(s) and L. 
What we would like to stress at this juncture is that when 
linearizing around a nonstatic eqUilibrium where there is no 
self-adjoint second-order formulation, a sharper version of 
the spectral mapping theorems may prove the most viable 
route towards a better understanding of the relation of the 
spectrum of L (or L + XI) to the time evolution of the semi­
group T(t) [or Tx (t)]. 

We now turn to the proof of the existence of a semigroup 
solution. We will consider separately the cases ( 1) lineariza­
tion around a static equilibrium, (2) linearization around an 
eqUilibrium with flow, and (3) incompressible plasmas. Be­
fore we do this, we will make some general remarks about the 

I 

nonapplicability of the general theory of maximal positive 
boundary data for symmetric positive systems to our case. 
These remarks may be of interest only to those already famil­
iar with the theory and may be skipped without loss of con­
tinuity. 

We consider the static case separately as opposed to a 
special case of the nonstatic case in order to facilitate future 
work regarding the comparison of the first- and second-or­
der operators and associated questions mentioned previous­
ly. 

C. On the inapplicability of general theory for 
symmetric positive systems 

This section is intended for those who are familiar with 
the theory of maximal positive boundary data for symmetric 
positive systems. 

We recall the general principle. Suppose we denote by 
N(x) the linear subspace in which the vector 

must lie in if it is to satisfy the boundary condition at x. Here 
N is called maximal positive if 

(An (x)w,w);;;'O, 't:/x@fl, weN(x) , (97) 

where 
(98) 

and if N cannot be enlarged while preserving (97). Note that 
clearly ker An eN. 

Now a simple calculation shows that the matrix An for 
the system (77)-(80) has the form 

( - n.vo) - (ypo/PO)i12n Po- 112 [ (n·Bo) - n (Bo')] 0 

G) - (ypo/PO)I/2n ( - vo·n) 0 

po- 1I2 [Bo·n) -Bo(n·)] - (vo·n) + vo(n.) 0 
(99) 

0 0 

The above matrix is so far completely general. That is, 
we have not yet imposed any boundary conditions on the 
equilibrium quantities VO' Po' and Bo. We have used the nota­
tion Bo(n.) to denote the operator submatrix that acts on 
w = (W I,W2,W3 ) through 

(B ~nj)(w) = B ~njw j' (100) 

The transposed matrix operator is 

which we denote by 

n(Bo')' 

(101 ) 

( 102) 

The matrix (99) is manifestly symmetric except for the 
expression 

- (vo·n) + vo(n·), 

whose transpose is 
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(103) 

0 - vo·n 

(104) 

We see that ( 103) and ( 104) are not generally equal. This is 
why we refer to (77)-(80) as a quasisymmetric hyperbolic 
system. When we restrict the action of (99) to elements B 
satisfyingB'n = 0 the symmetry is salvaged. HereB·n = 0 is 
valid for the B js that are subjected to the condition V·B = O. 

Note, however, that/or static equilibria Vo = 0, and the 
symmetry holds even without V·B = O. 

We now turn to the discussion ofthe matrix (99) when 
it operates on the boundary. There the conditions 
n·vo = n·Bo = 0, Po = c must be imposed. It is to the corre­
sponding simplified matrix and its operator kernel that we 
will now refer. Again, even at the boundary, this matrix is 
only symmetric when acting on a domain consisting of u's, 
u = (v,p,B) , for which V·B = O. Even on this restricted do­
main the conditions (97) ofthe general theory do not hold 
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however. To see this consider an element u = (v,ft,B,s), 
which satisfies 

n·v=O, (105) 

(106) 

It is easily seen that such u satisfy ueKer An. However, 
although v·n = v·n = 0, (106) does not imply that B'n = 0, 
thus 

Ker An ¢N(x). ( 107) 

Of course reinstating the condition V·B = 0 and its "charac­
teristic" equivalent n·B = 0, 

Ker An CN(x), 

if we interpret An as acting only on this subspace. Note that 
given the change of variables (75) and (76), (106) is the 
linearized version of the condition 

p+B 2/2=c, (108) 

which thus appears to be a more natural boundary condition 
than the traditionally imposed one B·n = O. 

D. Existence of semlgroup solutions 

We first recall the following definition. 
Definition: A semigroup T(t), O<t < 00, of bounded op­

erators is said to be a continuous Co semigroup in a Banach 
space x if 

lim T(t)x = x, for every xeX. 
flO 

These remarks may be of interest only to those unfamiliar 
with the theory and may be skipped without loss of contin­
uity. We also recall the Hille-Y osida theorem. 

Theorem 4.1: An operator A: X -X is the generator of a 
semigroup of bounded operators T(t) satisfying 

II T(t) II <ce"'t, 

if and only if ( 1 ) A is a closed operator with dense domain, 
(2) the resolvent set p(A) of A contains (w,oo), and (3) 
II (AI _L)n II<M IIA -win. Furthermore, if M = 1, (3) 
can be deduced from 

(3') IIAI -A 11< lilA -wi. (109) 

We will show that the conditions of the theorem are verified 
for the operator L + XI defined by (77 )-( 80) on an appro­
priate domain. Details will be given only for linearization 
around a static equilibrium. 

Case A (static equilibrium): X, the underlying Hilbert 
space, will be defined by 

X={v=(u,p,B)lueL 2 (ll), V·B=O}. (110) 

Remark: Note that L maps (v,B,p) to 
(- ,VX (vlp612 XBo), -). As 

(111) 

LueX, provided LueL 2(ll). Clearly the same holds for 

Lu + XI; (112) 

X will be determined by (77)-(80). We now define 
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D(L;) = {u = (v,p,B) lueL 2(ll), LlueL 2(ll), 

V·B = 0, v·n = 0, B·n = 0 on 8ll}. (113) 

Clearly D(Ll )eX. Furthermore, if 8ll is smooth 
enough, say C 2

, and we define 

D+(L;.) ={u= (v,p,B)lveC 1(ll), 

Vp - VXB XBo eC1(ll), 

V·B = 0, v·n = 0, B·n = 0 on 8ll}, 

thenD +(Ll ) is dense inD(Ll) in the graph norm IILluli. 
To show this we will first need to show the following 
theorem. 

Theorem 4.2: Ll is a closed operator for sufficiently 
largeX. 

Proof: We first show that on the domain D +, the follow­
ing inequality holds for large A: 

IILl +Aull>cllull· (114) 

For ueD +, this is a consequence of the symmetry of the A; 's 
and the boundary conditions u·n = B·n = 0 on 8ll. One rea­
sons as follows: Let A be real, consider 

«L + AI)u,(L + AI)u) 

Now 

(Lu,u) = (A; ~ u + BU,u) 
ax; 

= (~u,A;u) + (Bu,u) 
ax; 

= - (u, ~ (A;U») + (Bu,u) 
ax; 

+ (Bu,u). 

( 115) 

( 116) 

(117) 

( 118) 

(119) 

Here in the second step we have used the symmetry of the A;; 
in the third, the integration by parts, the boundary terms 
dropped out because 

i (A;n;u,u)ds = O. (120) 

Specifically the boundary terms that arise are 

p(v.n),{(vXBo) XB}.n. (121) 

The second term can be written 

(122) 

which vanishes by virture of (17) and (18). It is noteworthy 
that the boundary condition 

B·n=O 

was not used to establish ( 118). Thus, from ( 118) we obtain 

/2 Re(A; a~;Au,u) + 2Re(Bu,u) / <c'lluIl
2

• 

Thus forA >c' +A, 

II(L +AI)uIl2 >IILuIl2 +11Iu Il 2
• 

(123) 

(124) 

Moreover, an elementary calculation using the system (77)-
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( 80)_ establishes that for Ao sufficiently large there exists d 
and A so that, if A > Ao, 

IILull 2 + A IIul1 2 

;;.d{1I - Vp + V XB xBoll2 

+ IIVX (vXBo1l2 + IIV,vll 2 +X IIuIl 2}. (125) 

We define 

Lx = L + AI, X> Ao. 

It is clear from the inequality (124) that the norm IILl u II is 
equivalent to the graph norm {IILxull2 + lIuIl 2}J/2 on D + 
and thus on the closure of D + in this norm. Thus to show 
that (113) is valid on all of D(Lx ) we need merely to show 
that D + is dense in D. For now, assume we have proved this. 
We are then in a position to conclude the proof that Lx is a 
closed operator. 

Suppose that (un ,Lx un) is a Cauchy sequence in the 
graph norm. Since X is complete, there exist u, V such that 
Un~U' Vn = LAUn~V, We wish to show that ueD(Lx ) and 
Lxu = V. With u = (v,p,B), 

Vx (vXBo),V·v,Vp - VXB XBoEL 2(U), (126) 

V·B = 0 (127) 

are consequences of the continuity of differentiation in the 
sense of distributions. So we need merely to check that the 
boundary conditions B·n = 0, v·n = 0 are satisfied. As 

liLA un II;;.c'IIBn II, (128) 

B·n = 0 on 8U is a consequence of the inequality 

liB IIw'''(n <cllB II· (129) 

Similarly, from this inequality applied with u instead of B 
combined with the fact that 

liLA (Un - um ) II ;;.c'IIV,(vn - vn) II, 
we can conclude 

(130) 

v·n = 0, on 8U. (131) 

Thus ueD(Lx ), Lx (u) = V. Q.E.D. 
We next would like to verify condition (2) and (3') of 

the Hille-Y osida theorem. Condition (2), that the resolvent 
setp(LA ) contains (w,oo) for some sufficiently large w, fol­
lows easily from a general argument that we outline here for 
completeness. First as Lx is a closed operator, clearly the 
range of Lx on D(Lx ) is closed in X. Next we note that for 
Ao'S sufficiently large and real [possibly larger than Ao de­
fined by (124)], (114) applies to the adjoint L! of LA to 
show that, if A' >A~, ueD(L !), 

(132) 

This shows that the range of LA + A 'I is dense. For ifit were 
not there would exist VEX, V :;60, for which 

«Lx +A'I)u,V) =0, VueD(L1 +A'I). (133) 

This would then be true in particular for UEC 0' (U). Taking 
into account the definition of Lx + A 'I as a differential op­
erator acting in the sense of distributions, this then implies 
VeD(L!) and 

(L 1 +A 'I) V = 0, (134) 
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which by virture of (132) implies V = O. Last, we note that 
condition (3) of the Hille-Y osida theorem is satisfied by 
virture of inequality (113). 

There remains only to prove the density. We recall the 
definition of D(Lx ): 

D(Lx ) = {uEL 2(U), - Vp + VXB XBo'VX (vXBo), 

V·VEL 2(U), V·B = 0, v·n = B·n = 0 

on 8U}. (135) 

The technique in Ref. 18 applies (see Remark [4.2] and 
pp. 339-341). In outline one seeks to find approximating 
sequences that are defined on an open set U'eu. The ele­
ments of this approximating sequence can then in tum be 
approximated in 0 by first multiplying them by a function 
which is one on 0 and zero outside 0', and then mollifying 
the result. To define the original sequence one uses the exis­
tence of an open covering of the set 0 and 8U whose covering 
property is invariant under translations. For a more sophisti­
cated approach under weaker hypothesis on the coefficients 
see Ref. 15. Then the translational continuity of L 2 (0) does 
the rest. 

We next would like to outline how to handle the cases 
(2) equilibrium with flow and (3) incompressible plasma. 

Case B [equilibrium with flow (diffuse pinch)]: We first 
note that in the presence of flow, the equilibrium equations 
become 

POVo·VVo = - Vpo + VXBoXBo' 

vo·Vpo + YPoV·vo = 0, 

vo·VSo = 0, 

V.Bo=O, 

( 136) 

(137) 

(138) 

( 139) 

andpo may be determined from (So,Po) from the equation of 
state 

Po = SrPb· ( 140) 

The boundary conditions that are imposed are 

Bo·n = vo·n = 0, on r. (141) 

We explain now how the special structure of the Lund­
quist equations makes possible the definition of a closed op­
erator L on a domain that includes the boundary condition 
v·n = O,B·n = O. 

First, we again define, for an appropriate A, 

{ 

uEL 2(U), LAuEL 2(U) } 

D(LA ) = v·n = 0 on 8U, V·B = 0 . (142) 

B·n =0 on 8U 
To see that this domain is closed in the graph norm we must 
show that the condition v·n = 0 is satisfied. All the other 
steps are similar to those in the case of static equilibria. 

Let 

[

L1U] 
Lu = L2u , 

L3U 

L4u 

(143) 

where L 1.£2,L3.£4 correspond to V" B" p" and St' respec­
tively. By definition, 
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L 2u = VX( pf12 XBo) + VX(p~~2 XB). (144) 

Now given B, note the identity 

V-((pf12 XBo)XB) + V-((p~~2 XB )XB) 

=B'VX(~XBo) - (~XBo)'VXB 
p~12 pf/2 

+B'VX(p~~2 XB) - (p~~2 XB }VXB. (145) 

Integrating over n and using the divergence theorem we 
obtain for the left-hand side of (145) 

1 [ (pf12 XBo) XB ]-n ds + 1 [ (p~~2 XB ) XB ]-n ds, 

(146) 

which, upon being expanded and using the conditions 
B·n = Bo·n = vo·n = 0, yields 

1 (v.n)Bo·B ds. (147) 

Choosing now B = aBo, with aeH 1/2 (r), such that 
lIallHlI2(rJ >cllaIIH1(0), we find from (125) and (145) that 

11 (v·n)B~a dsl 

.;;;dIIBoIIL~ lIall} IIL2uli + IIVxB IIlIuli (148) 

.;;;dllallllL2ull + IIVaXBolbllvll + lIallllvll} (149) 

.;;;dllallllLull + lIallHl(O) Ilull} (150) 

.;;;dllaIIH1(O) IILul1 + Ilull} (151) 

.;;;c'lIaIlH"v) {IiLull + lIull}. (152) 

Thus, by duality, 

IIv.nB ~ IIH-"2(rJ .;;;c'{IILull + lIull}. (153) 

Now since B~v·n =0 in H- 1/2(r) implies v·n =0 in 
H -1/2(r) (given that, byassumption,B~ :;of 0 on r), we see 
that condition v·n = 0 is preserved by this norm. 

Case C (incompressible plasma): Here we add the condi­
tion V·v = 0 in n. In this case it is not appropriate to make 
the change of variables (75) and (76). We use only 

p = (rpo)1/2p. (154) 

This transformation puts the system (77)-(80) into the 
form 

a 
(prJ)u t +A; -u +B'u = 0, 

ax; 

with symmetric A ;, or 

U t + A ;' aa u + B "u = 0, 
'X; 

A;' = (prJ)-IA;. B; = (prJ)-IB;. 

(155) 

(156) 

Thus A ;' are also symmetric. It is now easy to prove that 

LA = -A;'~+B" +..tI (157) 
ax; 

generates a semigroup. The boundary conditions 
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v·n = B'n = 0 on 6n now both are preserved in the graph 
norm due to the inequality ( 50) and the fact that 
V·v=V·B=O. 

v. COMPARISON OF THE DOMAINS 

We here compare the domains of the operators corre­
sponding to the second- and first-order formulations for the 
case of the diffuse pinch. 

As our notion of a solution to the second-order equa­
tions, as discussed in Ref. 3, is to associate with them a sec­
ond-order evolutionary variational problem following the 
work of Lions-Magenes, 12 the solution is thus defined in a 
space off unctions requiring L 2 restrictions on only the first­
order derivatives. This is what accounts for the similarity 
between the domains (48) for the second-order and (135) 
for the first-order (symmetric hyperbolic) formulations. As 
is clear from these definitions, the space defined for the first­
order theory is such that its first component v lies in the 
space W defined for the second-order theory. If, instead of v, 
we require, as discussed in the Introduction, that SE W, and 
definep, B, which are denoted in (2) by v, by 

p= -s,Vpo-rpoV's+gl(x), 

(158) 
B=VX(SXBo) +g2(X), 

we see that our notion of solution for the second-order equa­
tions yields p and B EL 2 ( n ). However, the conditions inher­
ent in ( 135) when appropriately decoupled require more of p 
and B. For example, consider the condition 

-Vp+VXBXBo=fEL 2(n). (159) 

Take the curl of both sides in D ' (n) to get 

Vx (VXB XBo) = Vx feH-I(n). (160) 

From the vector identity (valid in D ' ) 

Vx (axb) = b·Va - a·Vb - bV·a + aV·b, (161) 

we deduce 

B·V(VXB)eH-I(n). (162) 

Also, take the dot product of (159) with Bo to obtain 

Bo'Vp = Bo·fEL 2(n). (163) 

The uniqueness of solutions to (89) and (90) guaran­
tees that there will existgl (x) andg2(x) (which amounts to 
choosing an appropriate subset of initial data) for which 
(159) and (163) hold. A direct not functionally dependent 
definition ofthe appropriategl's andg/s does not appear to 
be available, however. As is clear from the above discussion, 
however, f = g = 0 will not ensure that (159) and (163) 
hold. 
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ERRATA 

Erratum: The most general magnetized Kerr-Newman metric [J. Math. Phys. 
27,562 (1986)] 

Nora Bret6n Baez and Alberto Garcra oraz 
Centro de Investigaci(m y de Estudios Avanzados delIPN, Departamento de Fisica, Apartado Postal 14-740, 
07()(}() Mexico D. F., Mexico 

(Received 6 March 1986; accepted for publication 26 March 1986) 

In Eq. (2.6), the sixth and seventh lines should read 

- {3 arR sin2 
() [2(a-{3a)(a - {3a sin2 

(}) + {3 (aa - {3(a2 + ,-2»)cos2 (}]) 

+ ~(Eg-Be)R cos (}{(a -{3a sin2 (})[{32(a2 + 2v)cos2 
() - (a -{3a)2] 

Erratum: Structural analysis and elementary representations of SL(4,R) and 
GL(4,R) and their covering groups [J. Math. Phys. 27, 883 (1986)] 

v. K. Oobrevand O. Ts. Stoytchev 
Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1184, Bulgaria 

(Received 2 April 1986; accepted for publication 2 April 1986) 

On p. 885, right column, the two lines immediately preceding formula (2.21) should read as follows: 

C. The Weyl group W(g,a) 

We define for every AkEA + a vector HkEa by 
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